精英家教网 > 高中数学 > 题目详情
5.已知|$\overrightarrow{a}$|2=1,|$\overrightarrow{b}$|2=2,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.45°C.60°D.90°

分析 设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则由题意求得$\overrightarrow{a}$•$\overrightarrow{b}$=${\overrightarrow{a}}^{2}$=0,再利用两个向量的数量积的定义求得cosθ的值,可得θ的值.

解答 解:∵已知|$\overrightarrow{a}$|2=1,|$\overrightarrow{b}$|2=2,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,∴${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=0,
设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则$\overrightarrow{a}$•$\overrightarrow{b}$=${\overrightarrow{a}}^{2}$=1•$\sqrt{2}$•cosθ,求得cosθ=$\frac{\sqrt{2}}{2}$,∴θ=45°,
故选:B.

点评 本题主要考查两个向量的数量积的定义,求两个向量的夹角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象与x轴的一个交点$(-\frac{π}{12},0)$到其相邻的一条对称轴的距离为$\frac{π}{4}$.若$f(\frac{π}{12})=\frac{3}{2}$,则函数f(x)在$[0,\frac{π}{2}]$上的最小值为(  )
A.$\frac{1}{2}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数$y=sin({ωx+\frac{π}{3}})$(0<x<π),当且仅当$x=\frac{π}{12}$时,y取得最大值,则正数ω的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某工厂为了了解一批产品的净重(单位:克)情况,从中随机抽测了200件产品的净重,所得数据均在区间[96,106]上,其频率分布直方图如图所示,已知各个小方形按高度依次构成一个等差数列,则在抽测的200件产品中,净重在区间[98,102)上的产品件数是100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,平面PAB⊥底面ABCD,其中PA=PB,四边形ABCD是菱形,N为AC的中点,M是△PCD的中线PQ的中点.
(Ⅰ)证明:MN∥平面PAB;
(Ⅱ)证明:平面MNC⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左右焦点,点P在双曲线上,满足$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,若△PF1F2的内切圆半径与外接圆半径之比为$\frac{\sqrt{3}-1}{2}$,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.求圆C的普通方程和直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知平面上三个向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,给出下列说法:
①若$\overrightarrow{c}$=$\overrightarrow{a}$$+\overrightarrow{b}$,则$\overrightarrow{a}$、$\overrightarrow{b}$可以作为基底;
②若$\overrightarrow{a}$$∥\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若$\overrightarrow{a}$=$λ\overrightarrow{b}$,则|$\overrightarrow{a}$|=λ|$\overrightarrow{b}$|;
④若$\overrightarrow{a}$$+\overrightarrow{b}+\overrightarrow{c}$=$\overrightarrow{0}$,则|$\overrightarrow{c}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|.
其中正确说法的序号是④(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.
(1)顾客甲从10张奖券中任意抽取1张,求中奖金额X的分布列;
(2)顾客乙从10张奖券中任意抽取2张,
①求顾客乙中奖的概率;
②设顾客乙获得的奖品总价值为Y元,求Y的分布列.

查看答案和解析>>

同步练习册答案