分析 (Ⅰ)连BD,交AC于N,连结BQ,取BQ中点E,连结ME,NE,则EM∥PB,EN∥DQ,从而平面PAB∥平面EMN,由此能证明MN∥平面PAB.
(Ⅱ)取AB中点O,连结PO,QO,推导出PO⊥平面ABCD,从而MN⊥平面ABCD,由此能证明平面MNC⊥平面ABCD.
解答
证明:(Ⅰ)连BD,交AC于N,连结BQ,取BQ中点E,连结ME,NE,
∵四边形ABCD是菱形,N为AC的中点,M是△PCD的中线PQ的中点,
∴N是BD中点,∴EM∥PB,EN∥DQ,
∵DQ∥AB,∴EN∥AB,
∵PB∩AB=B,EM∩EN=E,
PB、AB?平面PAB,EM、EN?平面EMN,
∴平面PAB∥平面EMN,
∵MN?平面EMN,∴MN∥平面PAB.
(Ⅱ)取AB中点O,连结PO,QO,
∵在四棱锥P-ABCD中,平面PAB⊥底面ABCD,PA=PB,四边形ABCD是菱形,
N为AC的中点,M是△PCD的中线PQ的中点,
∴PO⊥AB,MN∥PO,∴PO⊥平面ABCD,
∴MN⊥平面ABCD,
∵MN?平面MNC,∴平面MNC⊥平面ABCD.
点评 本题考查线面平行的证明,考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
| 报账人的账单总额(元) | [0,1000) | [1000,2000) | [2000,3000) | [3000,4000) | [4000,5000) | [5000,6000) |
| 频数 | 24 | 12 | 32 | 10 | 14 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com