精英家教网 > 高中数学 > 题目详情
10.《幸福账单》是一档集情感故事、才艺秀、大型游戏、现场互动等多类元素的综艺大型互动游戏类节目.以普通人讲述手中账单背后的故事,并参与因此而量身为其定制的大型游戏,来赢得账单报销的形式,讲述了人与人之间的真情,展现了当今百姓生活中的万般幸福之态.某机构随机抽取100个参与节目的报账人的账单总额作为样本进行分析研究,由此得到如下频数分布表:
报账人的账单总额(元)[0,1000)[1000,2000)[2000,3000)[3000,4000)[4000,5000)[5000,6000)
 频数 2412 32 10 14 8
(Ⅰ)在如表中作出这些数据的频率分布直方图:
(Ⅱ)若将频率视为概率,从参与节目的报账人中随机抽取3位(看作有放回的抽样),求账单总额在[3000,4000)内的报账人数X的分布列、数学期望、与方差.

分析 (Ⅰ)由已知先作出频率分布表为,由此能作出频率分布直方图.
(Ⅱ)将频率视为概率从参与节目的报账人中随机抽取3位(看作有放回的抽样),由频率分布直方图得账单总额在[3000,4000)内的报账人数X~B(3,0.1),由此能求出X的分布列、数学期望、与方差.

解答 解:(Ⅰ)由已知得频率分布表为:

报账人的账单总额(元)[0,1000)[1000,2000)[2000,3000)[3000,4000)[4000,5000)[5000,6000)
频数2412 32 10 14 8
频率0.240.120.320.100.140.08
∴频率分布直方图为:

(Ⅱ)将频率视为概率从参与节目的报账人中随机抽取3位(看作有放回的抽样),
由频率分布直方图得账单总额在[3000,4000)内的报账人数X~B(3,0.1),
∴P(X=0)=${C}_{3}^{0}×0.{9}^{3}$=0.729,
P(X=1)=${C}_{3}^{1}×0.1×0.{9}^{2}$=0.243,
P(X=2)=${C}_{3}^{2}×0.{1}^{2}×0.9$=0.027,
P(X=3)=${C}_{3}^{3}×0.{1}^{3}$=0.0001,
∴X的分布列为:
 X 0 1 2 3
 P 0.729 0.243 0.027 0.0001
∵X~B(3,0.1),
∴EX=3×0.1=0.3,
DX=3×0.1×(1-0.1)=0.27.

点评 本题考查频率分布直方图的作法,考查离散型随机变量的分布列、数学期望、方差的作法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q
(1)求动点Q的轨迹Γ的方程;
(2)若直线y=k(x-1)与(1)中的轨迹Γ交于R,S两点,问是否在x轴上存在一点T,使得当k变动时,总有∠OTS=∠OTR?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p,q,则“¬p或q为假”是“p且¬q为真”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某工厂新研发的一种产品的成本价是4元/件,为了对该产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下6组数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(Ⅰ)若90≤x+y<100,就说产品“定价合理”,现从这6组数据中任意抽取2组数据,2组数据中“定价合理”的个数记为X,求X的数学期望;
(Ⅱ)求y关于x的线性回归方程,并用回归方程预测在今后的销售中,为使工厂获得最大利润,该产品的单价应定为多少元?(利润L=销售收入-成本)
附:线性回归方程$\hat y=\hat bx+\hat a$中系数计算公式:$\hat b=\frac{{\sum_{i=1}^n{(\;{x_i}-\overline x\;)(\;{y_i}-\overline y\;)}}}{{\sum_{i=1}^n{{{(\;{x_i}-\overline x\;)}^2}}}}$,$\hat a=\overline y-\hat b\;\overline x$,其中$\overline x$、$\overline y$表示样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象与x轴的一个交点$(-\frac{π}{12},0)$到其相邻的一条对称轴的距离为$\frac{π}{4}$.若$f(\frac{π}{12})=\frac{3}{2}$,则函数f(x)在$[0,\frac{π}{2}]$上的最小值为(  )
A.$\frac{1}{2}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}acosB+bsinA=0$,则B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,记$\overrightarrow{BA}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b$,∠B=$\frac{π}{3}$,AB=8,点D在BC边上,且CD=2,cos∠ADC=$\frac{1}{7}$.
(Ⅰ)试用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{DA}$;
(Ⅱ)若以B点为坐标原点,BC所在的直线为x轴(正方向为向右)建立平面直角坐标系,使得点A落在第一象限.点P(x,y)在△ABC三边围成的区域(含边界)上,设$\overrightarrow{BP}=m\overrightarrow a+n\overrightarrow b(m,n∈R)$,求m-n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,平面PAB⊥底面ABCD,其中PA=PB,四边形ABCD是菱形,N为AC的中点,M是△PCD的中线PQ的中点.
(Ⅰ)证明:MN∥平面PAB;
(Ⅱ)证明:平面MNC⊥平面ABCD.

查看答案和解析>>

同步练习册答案