精英家教网 > 高中数学 > 题目详情
20.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q
(1)求动点Q的轨迹Γ的方程;
(2)若直线y=k(x-1)与(1)中的轨迹Γ交于R,S两点,问是否在x轴上存在一点T,使得当k变动时,总有∠OTS=∠OTR?说明理由.

分析 (1)连结QF,运用垂直平分线定理可得,|QP|=|QF|,可得|QE|+|QF|=|QE|+|QP|=4>|EF|=2,由椭圆的定义即可得到所求轨迹方程;
(2)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2),联立直线方程和椭圆方程,运用韦达定理和判别式大于0,由直线的斜率之和为0,化简整理,即可得到存在T(4,0).

解答 解:(1)连结QF,根据题意,|QP|=|QF|,
则|QE|+|QF|=|QE|+|QP|=4>|EF|=2,
故动点Q的轨迹Γ是以E,F为焦点,长轴长为4的椭圆.
设其方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
可知a=2,c=1,∴$b=\sqrt{{a^2}-{c^2}}=\sqrt{3}$,
所以点Q的轨迹Γ的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;          
(2)假设存在T(t,0)满足∠OTS=∠OTR.
设R(x1,y1),S(x2,y2)联立$\left\{\begin{array}{l}y=k({x-1})\\ 3{x^2}+4{y^2}-12=0\end{array}\right.$,
 得(3+4k2)x2-8k2x+4k2-12=0,
由韦达定理有$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}}\\{x_1}{x_2}=\frac{{4{k^2}-12}}{{3+4{k^2}}}\end{array}\right.$①,其中△>0恒成立,
由∠OTS=∠OTR(显然TS,TR的斜率存在),
故kTS+kTR=0即$\frac{y_1}{{{x_1}-t}}+\frac{y_2}{{{x_2}-t}}=0$②,
由R,S两点在直线y=k(x-1)上,
故y1=k(x1-1),y2=k(x2-1)代入②得$\frac{{k({{x_1}-1})({{x_2}-t})+k({{x_2}-1})({{x_1}-t})}}{{({{x_1}-t})({{x_2}-t})}}{=}\frac{{k[{2{x_1}{x_2}-({t+1})({{x_1}+{x_2}})+2t}]}}{{({{x_1}-t})({{x_2}-t})}}=0$,
即有2x1x2-(t+1)(x1+x2)+2t=0③,
将①代入③,即有:$\frac{{8{k^2}-24-({t+1})8{k^2}+2t({3+4{k^2}})}}{{3{+}4{k^2}}}=\frac{6t-24}{{3+4{k^2}}}=0$④,
要使得④与k的取值无关,当且仅当“t=4“时成立,
综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.

点评 本题考查椭圆的方程的求法,注意运用垂直平分线的性质和椭圆的定义,考查存在性问题的解法,注意运用直线方程和椭圆方程联立,运用韦达定理和判别式大于0,以及点满足直线方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知圆M:(x-m)2+y2=1的切线l,当l的方程为y=1时,直线l与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相切,且椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆的标准方程;
(2)当m<0时,设S表示三角形的面积,若M的切线l:y=kx+$\sqrt{2}$与椭圆C交于不同的两点P,Q,当$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{2}{3}$时,求S△MPQ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$x2-mlnx,g(x)=$\frac{1}{2}$x2-2x,F(x)=f(x)-g(x)
(Ⅰ)当m>0,求函数f(x)的单调区间;
(Ⅱ)当m=-1时,试问过点(2,5)可作多少条直线与曲线y=F(x)相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在梯形ABCD中,AB∥CD,AB=2CD,E为BC中点,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则x+y=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$2+\frac{2}{3}={2^2}×\frac{2}{3}\;,\;3+\frac{3}{8}={3^2}×\frac{3}{8}\;,\;4+\frac{4}{15}={4^2}×\frac{4}{15}\;,\;…$,若9+$\frac{a}{b}$=92+$\frac{a}{b}$(a,b为正整数)则a+b=89.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的方程是mx2+ny2=1(m>0mn>0),且曲线C过A($\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{2}$),B($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{3}}{3}$)两点,O为坐标原点
(Ⅰ)求曲线C的方程;
(Ⅱ)设M(x1,y1),N(x2,y2)是曲线C上两点,且OM⊥ON,求证:直线MN恒与一个定圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{{-x}^{2},x>0}\end{array}\right.$,不等式f(ax2)+f(1-ax)<0对任意的x∈R都成立,则实数a的取值范围(  )
A.(0,4)B.(-4,0)C.[0,4)D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=λ(λ>0),不经过原点O的直线l:y=kx+m(k>0)与椭圆C相交于不同的两点M,N,直线OM,MN,ON斜率依次构成等比数列.
(I)求k的值,
(II)若△MON的面积为m2+1,求λ的最小值.并求出此时实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.《幸福账单》是一档集情感故事、才艺秀、大型游戏、现场互动等多类元素的综艺大型互动游戏类节目.以普通人讲述手中账单背后的故事,并参与因此而量身为其定制的大型游戏,来赢得账单报销的形式,讲述了人与人之间的真情,展现了当今百姓生活中的万般幸福之态.某机构随机抽取100个参与节目的报账人的账单总额作为样本进行分析研究,由此得到如下频数分布表:
报账人的账单总额(元)[0,1000)[1000,2000)[2000,3000)[3000,4000)[4000,5000)[5000,6000)
 频数 2412 32 10 14 8
(Ⅰ)在如表中作出这些数据的频率分布直方图:
(Ⅱ)若将频率视为概率,从参与节目的报账人中随机抽取3位(看作有放回的抽样),求账单总额在[3000,4000)内的报账人数X的分布列、数学期望、与方差.

查看答案和解析>>

同步练习册答案