·ÖÎö £¨1£©ÓÉÖ±Ïßl£ºy=1ÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®¿ÉµÃ£ºb=1£¬$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2£¬ÁªÁ¢½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª$£¨1+2{k}^{2}£©{x}^{2}+4\sqrt{2}kx$+2=0£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¡÷£¾0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ£ºy1y2=k2x1x2+$\sqrt{2}k$£¨x1+x2£©+2.$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=$\frac{2}{3}$£¬½âµÃk2=1£®ÀûÓÃ|PQ|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$£®¼´¿ÉµÃ³öS¡÷MPQ£®
½â´ð ½â£º£¨1£©¡ßÖ±Ïßl£ºy=1ÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
¡àb=1£¬$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2£¬
ÁªÁ¢½âµÃb=c=1£¬a2=2£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=kx+\sqrt{2}}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª$£¨1+2{k}^{2}£©{x}^{2}+4\sqrt{2}kx$+2=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¡÷=32k2-8£¨1+2k2£©£¾0£¬½âµÃk2$£¾\frac{1}{2}$£®
¡àx1+x2=$\frac{-4\sqrt{2}k}{1+2{k}^{2}}$£¬x1x2=$\frac{2}{1+2{k}^{2}}$£®
¡ày1y2=$£¨k{x}_{1}+\sqrt{2}£©£¨k{x}_{2}+\sqrt{2}£©$=k2x1x2+$\sqrt{2}k$£¨x1+x2£©+2=$\frac{2{k}^{2}}{1+2{k}^{2}}$-$\frac{8{k}^{2}}{1+2{k}^{2}}$+2=$\frac{2-2{k}^{2}}{1+2{k}^{2}}$£®
¡à$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=$\frac{2}{1+2{k}^{2}}$+$\frac{2-2{k}^{2}}{1+2{k}^{2}}$=$\frac{4-2{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{3}$£¬½âµÃk2=1$£¾\frac{1}{2}$£®
¡à|PQ|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2¡Á£¨\frac{32}{9}-\frac{8}{3}£©}$=$\frac{4}{3}$£®
¡ßMµÄÇÐÏßl£ºy=x+$\sqrt{2}$£¬
¡à$\frac{|m+\sqrt{2}|}{\sqrt{2}}$=1£¬m£¼0£¬½âµÃm=-2$\sqrt{2}$£®
¡àS¡÷MPQ=$\frac{1}{2}¡Á1¡Á\frac{4}{3}$=$\frac{2}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢ÏòÁ¿ÊýÁ¿»ýÔËËãÐÔÖÊ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£¬1£© | B£® | £¨-1£¬-1£© | C£® | £¨1£¬-1£© | D£® | £¨-1£¬1£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a£¼b£¼c | B£® | c£¼b£¼a | C£® | c£¼a£¼b | D£® | b£¼c£¼a |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [$\frac{1}{7}$£¬+¡Þ£© | B£® | [$\frac{1}{7}$£¬$\frac{1}{3}$£© | C£® | £¨-¡Þ£¬$\frac{1}{3}$£© | D£® | £¨-¡Þ£¬$\frac{1}{7}$]¡È£¨$\frac{1}{3}$£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com