10£®ÒÑÖªÔ²M£º£¨x-m£©2+y2=1µÄÇÐÏßl£¬µ±lµÄ·½³ÌΪy=1ʱ£¬Ö±ÏßlÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©µ±m£¼0ʱ£¬ÉèS±íʾÈý½ÇÐεÄÃæ»ý£¬ÈôMµÄÇÐÏßl£ºy=kx+$\sqrt{2}$ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¬µ±$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{2}{3}$ʱ£¬ÇóS¡÷MPQµÄÖµ£®

·ÖÎö £¨1£©ÓÉÖ±Ïßl£ºy=1ÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®¿ÉµÃ£ºb=1£¬$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2£¬ÁªÁ¢½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª$£¨1+2{k}^{2}£©{x}^{2}+4\sqrt{2}kx$+2=0£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¡÷£¾0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ£ºy1y2=k2x1x2+$\sqrt{2}k$£¨x1+x2£©+2.$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=$\frac{2}{3}$£¬½âµÃk2=1£®ÀûÓÃ|PQ|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$£®¼´¿ÉµÃ³öS¡÷MPQ£®

½â´ð ½â£º£¨1£©¡ßÖ±Ïßl£ºy=1ÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
¡àb=1£¬$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2£¬
ÁªÁ¢½âµÃb=c=1£¬a2=2£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=kx+\sqrt{2}}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª$£¨1+2{k}^{2}£©{x}^{2}+4\sqrt{2}kx$+2=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¡÷=32k2-8£¨1+2k2£©£¾0£¬½âµÃk2$£¾\frac{1}{2}$£®
¡àx1+x2=$\frac{-4\sqrt{2}k}{1+2{k}^{2}}$£¬x1x2=$\frac{2}{1+2{k}^{2}}$£®
¡ày1y2=$£¨k{x}_{1}+\sqrt{2}£©£¨k{x}_{2}+\sqrt{2}£©$=k2x1x2+$\sqrt{2}k$£¨x1+x2£©+2=$\frac{2{k}^{2}}{1+2{k}^{2}}$-$\frac{8{k}^{2}}{1+2{k}^{2}}$+2=$\frac{2-2{k}^{2}}{1+2{k}^{2}}$£®
¡à$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=$\frac{2}{1+2{k}^{2}}$+$\frac{2-2{k}^{2}}{1+2{k}^{2}}$=$\frac{4-2{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{3}$£¬½âµÃk2=1$£¾\frac{1}{2}$£®
¡à|PQ|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2¡Á£¨\frac{32}{9}-\frac{8}{3}£©}$=$\frac{4}{3}$£®
¡ßMµÄÇÐÏßl£ºy=x+$\sqrt{2}$£¬
¡à$\frac{|m+\sqrt{2}|}{\sqrt{2}}$=1£¬m£¼0£¬½âµÃm=-2$\sqrt{2}$£®
¡àS¡÷MPQ=$\frac{1}{2}¡Á1¡Á\frac{4}{3}$=$\frac{2}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢ÏòÁ¿ÊýÁ¿»ýÔËËãÐÔÖÊ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚ160ºÍ5Öмä²åÈë4¸öÊý£¬Ê¹Õâ6¸öÊý³ÉµÈ±ÈÊýÁУ¬ÇóÕâ6¸öÊýµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¾­¹ýµã£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬ÇÒÁ½½¹µãÓë¶ÌÖáµÄÒ»¸ö¶Ëµã¹¹³ÉµÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©Ö±ÏßMN·½³ÌΪy=kx+m£¬·Ö±ð½»ÍÖÔ²ÓÚM£¬NÁ½µã
¢ÙM£¬NÓëÍÖÔ²×ó¶¥µãµÄÁ½ÌõÁ¬ÏßбÂʳ˻ýΪ-$\frac{1}{2}$£¬ÇóÖ¤Ö±ÏßMN¹ý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®
¢Ú¡÷MONµÄÖØÐÄGÔÚÒÔÔ­µãΪԲÐÄ£¬$\frac{2}{3}$Ϊ°ë¾¶µÄÔ²ÉÏ£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎªÂäʵ¹úÎñÔº¡°Ê®ÈýÎ塱¹æ»®ÖеÄÉç»áÃñÉú½¨É裬ijҽԺµ½ÉçÇø¼ì²éÀÏÄêÈ˵ÄÌåÖʽ¡¿µÇé¿ö£®´Ó¸ÃÉçÇøÈ«ÌåÀÏÄêÈËÖУ¬Ëæ»ú³éÈ¡12Ãû½øÐÐÌåÖʽ¡¿µ²âÊÔ£¬²âÊԳɼ¨£¨°Ù·ÖÖÆ£©ÒÔ¾¥Ò¶Í¼ÐÎʽÈçͼ£º¸ù¾ÝÀÏÄêÈËÌåÖʽ¡¿µ±ê×¼£¬³É¼¨²»µÍÓÚ80µÄΪÓÅÁ¼£®
£¨¢ñ£©½«ÆµÂÊÊÓΪ¸ÅÂÊ£®¸ù¾ÝÑù±¾¹À¼Æ×ÜÌåµÄ˼Ï룬ÔÚ¸ÃÉçÇøÈ«ÌåÀÏÄêÈËÖÐÈÎÑ¡3È˽øÐÐÌåÖʽ¡¿µ²âÊÔ£¬ÇóÖÁÉÙÓÐ1È˳ɼ¨ÊÇ¡°ÓÅÁ¼¡±µÄ¸ÅÂÊ£»
£¨¢ò£©´Ó³éÈ¡µÄ12ÈËÖÐËæ»úѡȡ3ÈË£¬¼Ç¦Î±íʾ³É¼¨¡°ÓÅÁ¼¡±µÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®º¯Êýf£¨x£©=£¨$\frac{1}{3}$£©x+x-5µÄÁãµãΪx1¡¢x2£¬º¯Êýg£¨x£©=log${\;}_{\frac{1}{3}}$x+x-5µÄÁãµãΪx3¡¢x4£¬Ôòx1+x2+x3+x4µÄֵΪ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¸´ÊýzÂú×ãz•i=1+i£¨iÊÇÐéÊýµ¥Î»£©£¬Ôò¸´ÊýzµÄ¹²éÊýÔÚ¸´Æ½ÃæÄÚËù¶ÔÓ¦µÄµãµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨1£¬1£©B£®£¨-1£¬-1£©C£®£¨1£¬-1£©D£®£¨-1£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªa=£¨$\frac{3}{5}$£©${\;}^{\frac{2}{5}}$£¬b=£¨$\frac{2}{5}$£©${\;}^{\frac{3}{5}}$£¬c=£¨$\frac{2}{5}$£©${\;}^{\frac{2}{5}}$£¬Ôò£¨¡¡¡¡£©
A£®a£¼b£¼cB£®c£¼b£¼aC£®c£¼a£¼bD£®b£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{£¨3a-1£©x+4a£¬x£¼1}\\{-x+1£¬x¡Ý1}\end{array}\right.$ÊǶ¨ÒåÔÚRÉϵļõº¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{1}{7}$£¬+¡Þ£©B£®[$\frac{1}{7}$£¬$\frac{1}{3}$£©C£®£¨-¡Þ£¬$\frac{1}{3}$£©D£®£¨-¡Þ£¬$\frac{1}{7}$]¡È£¨$\frac{1}{3}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÔ²E£º£¨x+1£©2+y2=16£¬µãF£¨1£¬0£©£¬PÊÇÔ²EÉÏÈÎÒâÒ»µã£¬Ïß¶ÎPFµÄ´¹Ö±Æ½·ÖÏߺͰ뾶PEÏཻÓÚQ
£¨1£©Ç󶯵ãQµÄ¹ì¼£¦£µÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßy=k£¨x-1£©Ó루1£©ÖеĹ켣¦£½»ÓÚR£¬SÁ½µã£¬ÎÊÊÇ·ñÔÚxÖáÉÏ´æÔÚÒ»µãT£¬Ê¹µÃµ±k±ä¶¯Ê±£¬×ÜÓСÏOTS=¡ÏOTR£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸