精英家教网 > 高中数学 > 题目详情
19.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{-x+1,x≥1}\end{array}\right.$是定义在R上的减函数,则实数a的取值范围是(  )
A.[$\frac{1}{7}$,+∞)B.[$\frac{1}{7}$,$\frac{1}{3}$)C.(-∞,$\frac{1}{3}$)D.(-∞,$\frac{1}{7}$]∪($\frac{1}{3}$,+∞)

分析 根据分段函数单调性的性质建立不等式关系进行求解即可.

解答 解:当x≥1时,函数f(x)=-x+1为减函数,此时函数的最大值为f(1)=0,
要使f(x)在R上的减函数,
则满足$\left\{\begin{array}{l}{3a-1<0}\\{3a-1+4a≥f(1)=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a<\frac{1}{3}}\\{a≥\frac{1}{7}}\end{array}\right.$,解集$\frac{1}{7}$≤a<$\frac{1}{3}$,
故选:B.

点评 本题主要考查函数单调性的应用,根据分段函数单调性的性质建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(sinβ,cosβ).
(1)求|$\overrightarrow{a}$$+\overrightarrow{b}$|的最小值;
(2)若向量$\overrightarrow{c}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),且$\overrightarrow{b}$$•\overrightarrow{c}$=$\frac{3}{5}$,β∈(0,π),求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆M:(x-m)2+y2=1的切线l,当l的方程为y=1时,直线l与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相切,且椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆的标准方程;
(2)当m<0时,设S表示三角形的面积,若M的切线l:y=kx+$\sqrt{2}$与椭圆C交于不同的两点P,Q,当$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{2}{3}$时,求S△MPQ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过原点向圆x2+y2-2x-4y+4=0引切线,则切线方程为$y=\frac{3}{4}x$或x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sin$\frac{π}{2}$xcos$\frac{π}{2}$x+cos2$\frac{π}{2}$x-$\frac{1}{2}$(-1≤x≤1),g(x)是定义域为[-1,1]的偶函数,且当x∈[0,1]时,g(x)=f(x).
(1)求函数f(x)的单调区间;
(2)若方程g(x)=m恰有四个不相等实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点A,B分别为圆M:x2+(y-3)2=1与圆N:(x-3)2+(y-8)2=4上的动点,点C在直线x+y=0上运动,则|AC|+|BC|的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$x2-mlnx,g(x)=$\frac{1}{2}$x2-2x,F(x)=f(x)-g(x)
(Ⅰ)当m>0,求函数f(x)的单调区间;
(Ⅱ)当m=-1时,试问过点(2,5)可作多少条直线与曲线y=F(x)相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在梯形ABCD中,AB∥CD,AB=2CD,E为BC中点,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则x+y=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=λ(λ>0),不经过原点O的直线l:y=kx+m(k>0)与椭圆C相交于不同的两点M,N,直线OM,MN,ON斜率依次构成等比数列.
(I)求k的值,
(II)若△MON的面积为m2+1,求λ的最小值.并求出此时实数m的值.

查看答案和解析>>

同步练习册答案