精英家教网 > 高中数学 > 题目详情
8.在梯形ABCD中,AB∥CD,AB=2CD,E为BC中点,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则x+y=$\frac{5}{4}$.

分析 由题意作图辅助,从而利用平面向量的线性运算化简即可.

解答 解:由题意作图如右图,
∵AB∥CD,AB=2CD,∴$\overrightarrow{DC}$=$\frac{1}{2}$$\overrightarrow{AB}$,
∵E为BC中点,
∴$\overrightarrow{AE}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$)=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{DC}$+$\overrightarrow{AB}$)
=$\frac{1}{2}$($\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{AB}$)=$\frac{1}{2}$$\overrightarrow{AD}$+$\frac{3}{4}$$\overrightarrow{AB}$,
又∵$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,
∴x=$\frac{1}{2}$,y=$\frac{3}{4}$,
故x+y=$\frac{5}{4}$
故答案为:$\frac{5}{4}$.

点评 本题考查了平面向量的线性运算的几何表示与数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.为落实国务院“十三五”规划中的社会民生建设,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式如图:根据老年人体质健康标准,成绩不低于80的为优良.
(Ⅰ)将频率视为概率.根据样本估计总体的思想,在该社区全体老年人中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(Ⅱ)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{-x+1,x≥1}\end{array}\right.$是定义在R上的减函数,则实数a的取值范围是(  )
A.[$\frac{1}{7}$,+∞)B.[$\frac{1}{7}$,$\frac{1}{3}$)C.(-∞,$\frac{1}{3}$)D.(-∞,$\frac{1}{7}$]∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在四棱锥P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设$\frac{PE}{ED}$=m,则“0<m<2”是三棱锥C-ABE的体积不小于1的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${({2x-\frac{1}{x}})^6}$的展开式中的常数项的值是-160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设实数a,b满足0≤a,b≤8,且b2=16+a2,则b-a的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q
(1)求动点Q的轨迹Γ的方程;
(2)若直线y=k(x-1)与(1)中的轨迹Γ交于R,S两点,问是否在x轴上存在一点T,使得当k变动时,总有∠OTS=∠OTR?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过M(-b,0)的直线l与椭圆C交于A,B两点
(1)已知椭圆C的离心率为$\frac{\sqrt{3}}{3}$,过N(b,0)作x轴的垂线与直线l交于P.且NP的中点在C上.求直线1的倾斜角;
(2)设B关于坐标原点的对称点为Q,求△ABQ的面积最大值(用a,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案