精英家教网 > 高中数学 > 题目详情
16.在四棱锥P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设$\frac{PE}{ED}$=m,则“0<m<2”是三棱锥C-ABE的体积不小于1的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 经过点E作EH⊥AD,垂足为H,可得EH⊥平面ABCD,利用三棱锥条件计算公式可得:VC-ABE=$\frac{2}{3}EH$≥1,即EH$≥\frac{3}{2}$,又PA=3,可得$\frac{PE}{ED}$=m≤1,即可判断出结论.

解答 解:经过点E作EH⊥AD,垂足为H,
∵PA⊥底面ABCD,∴平面PAD⊥平面ABCD.
则EH⊥平面ABCD,
∵VC-ABE=VE-ABC
∴VC-ABE=$\frac{1}{3}×{S}_{△ABC}×EH$=$\frac{1}{3}×\frac{1}{2}×2×2$×EH=$\frac{2}{3}EH$≥1,
则EH$≥\frac{3}{2}$,
又PA=3,$\frac{EH}{PA}=\frac{ED}{PD}$,∴$\frac{3-EH}{EH}=\frac{PE}{ED}$,∴$\frac{PE}{ED}$=m≤2-1=1,
∴“0<m<2”是三棱锥C-ABE的体积不小于1的必要不充分条件.
故选:B.

点评 本题考查了空间位置关系的判定、体积的计算、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,ABCD是平行四边形,EA⊥平面ABCD,PD∥EA,BD=PD=2EA=4,AD=3,AB=5.F,G,H分别为PB,EB,PC的中点.
(1)求证:DB⊥GH;
(2)求平面FGH与平面EBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过原点向圆x2+y2-2x-4y+4=0引切线,则切线方程为$y=\frac{3}{4}x$或x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点A,B分别为圆M:x2+(y-3)2=1与圆N:(x-3)2+(y-8)2=4上的动点,点C在直线x+y=0上运动,则|AC|+|BC|的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$x2-mlnx,g(x)=$\frac{1}{2}$x2-2x,F(x)=f(x)-g(x)
(Ⅰ)当m>0,求函数f(x)的单调区间;
(Ⅱ)当m=-1时,试问过点(2,5)可作多少条直线与曲线y=F(x)相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{lg(x+1),x>0}\end{array}\right.$若f(2x)>f(x2-3),则实数x的取值范围是(  )
A.(-1,3)B.(-∞,-1)∪(3,+∞)C.(-∞,-3)∪(1,+∞)D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在梯形ABCD中,AB∥CD,AB=2CD,E为BC中点,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则x+y=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的方程是mx2+ny2=1(m>0mn>0),且曲线C过A($\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{2}$),B($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{3}}{3}$)两点,O为坐标原点
(Ⅰ)求曲线C的方程;
(Ⅱ)设M(x1,y1),N(x2,y2)是曲线C上两点,且OM⊥ON,求证:直线MN恒与一个定圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5,2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间超过1.5个小时的有5人.

查看答案和解析>>

同步练习册答案