精英家教网 > 高中数学 > 题目详情
18.为落实国务院“十三五”规划中的社会民生建设,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式如图:根据老年人体质健康标准,成绩不低于80的为优良.
(Ⅰ)将频率视为概率.根据样本估计总体的思想,在该社区全体老年人中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(Ⅱ)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的人数,求ξ的分布列及期望.

分析 (Ⅰ)从该社区中任选1人,成绩是“优良”的概率为$\frac{2}{3}$,由此利用对立事件概率计算公式能求出至少有1人成绩是“优良”的概率.
(Ⅱ)由题意可得,ξ的可能取值为0,1,2,3.分别求出相应的概率,由此能求出ξ的分布列及期望.

解答 解:(Ⅰ)抽取的12人中成绩是“优良”的频率为$\frac{2}{3}$,
故从该社区中任选1人,成绩是“优良”的概率为$\frac{2}{3}$,…(2分)
设“在该社区老人中任选3人,至少有1人成绩是‘优良’的事件”为A,
则$P(A)=1-C_3^0×{(1-\frac{2}{3})^3}=1-\frac{1}{27}=\frac{26}{27}$;                …(5分)
(Ⅱ)由题意可得,ξ的可能取值为0,1,2,3.
$P(ξ=0)=\frac{C_4^3}{{C_{12}^3}}=\frac{4}{220}=\frac{1}{55}$,
$P(ξ=1)=\frac{C_8^1C_4^2}{{C_{12}^3}}=\frac{48}{220}=\frac{12}{55}$,
$P(ξ=2)=\frac{C_8^2C_4^1}{{C_{12}^3}}=\frac{112}{220}=\frac{28}{55}$,
$P(ξ=3)=\frac{C_8^3}{{C_{12}^3}}=\frac{56}{220}=\frac{14}{55}$,…(9分)
所以ξ的分布列为

ξ0123
P$\frac{1}{55}$$\frac{12}{55}$$\frac{28}{55}$$\frac{14}{55}$
$Eξ=0×\frac{1}{55}+1×\frac{12}{55}+2×\frac{28}{55}+3×\frac{14}{55}=2$.…(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(4,5cosα),$\overrightarrow{b}$=(3,-4tanα),α∈(0,$\frac{π}{2}$),且$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(1)求|$\overrightarrow{a}$$+\overrightarrow{b}$|;
(2)求$\frac{2sinαcosα}{sinα+cosα-1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(sinβ,cosβ).
(1)求|$\overrightarrow{a}$$+\overrightarrow{b}$|的最小值;
(2)若向量$\overrightarrow{c}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),且$\overrightarrow{b}$$•\overrightarrow{c}$=$\frac{3}{5}$,β∈(0,π),求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,ABCD是平行四边形,EA⊥平面ABCD,PD∥EA,BD=PD=2EA=4,AD=3,AB=5.F,G,H分别为PB,EB,PC的中点.
(1)求证:DB⊥GH;
(2)求平面FGH与平面EBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+bx+c(b,c∈R)满足f(b)≥f(c),记f(x)的最小值为m(b,c).
(Ⅰ)证明:当b>0时,m(b,c)≤1;
(Ⅱ)当b,c满足m(b,c)≥1时,求f(1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)=$\left\{\begin{array}{l}{4{x}^{3}+6{x}^{2}+2(x≤0)}\\{2{e}^{ax}(x>0)}\end{array}\right.$在区间[-2,2]上最大值为4,则实数a的取值范围为(  )
A.[$\frac{1}{2}$ln2,+∞]B.[0,$\frac{1}{2}$ln2]C.(-∞,0]D.(-∞,$\frac{1}{2}$ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆M:(x-m)2+y2=1的切线l,当l的方程为y=1时,直线l与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相切,且椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆的标准方程;
(2)当m<0时,设S表示三角形的面积,若M的切线l:y=kx+$\sqrt{2}$与椭圆C交于不同的两点P,Q,当$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{2}{3}$时,求S△MPQ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过原点向圆x2+y2-2x-4y+4=0引切线,则切线方程为$y=\frac{3}{4}x$或x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在梯形ABCD中,AB∥CD,AB=2CD,E为BC中点,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则x+y=$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案