精英家教网 > 高中数学 > 题目详情
3.${({2x-\frac{1}{x}})^6}$的展开式中的常数项的值是-160.

分析 根据二项式展开式中的通项公式,令展开式中x项的指数为0,即可求出展开式的常数项.

解答 解:${({2x-\frac{1}{x}})^6}$的展开式中的通项公式为
Tr+1=${C}_{6}^{r}$•(2x)6-r•${(-\frac{1}{x})}^{r}$=(-1)r•${C}_{6}^{r}$•26-r•x6-2r
令6-2r=0,解得r=3;
所以常数项为:
T3+1=(-1)3•${C}_{6}^{3}$•23=-160.
故答案为:-160.

点评 本题考查了二项式展开式定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+bx+c(b,c∈R)满足f(b)≥f(c),记f(x)的最小值为m(b,c).
(Ⅰ)证明:当b>0时,m(b,c)≤1;
(Ⅱ)当b,c满足m(b,c)≥1时,求f(1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sin$\frac{π}{2}$xcos$\frac{π}{2}$x+cos2$\frac{π}{2}$x-$\frac{1}{2}$(-1≤x≤1),g(x)是定义域为[-1,1]的偶函数,且当x∈[0,1]时,g(x)=f(x).
(1)求函数f(x)的单调区间;
(2)若方程g(x)=m恰有四个不相等实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$x2-mlnx,g(x)=$\frac{1}{2}$x2-2x,F(x)=f(x)-g(x)
(Ⅰ)当m>0,求函数f(x)的单调区间;
(Ⅱ)当m=-1时,试问过点(2,5)可作多少条直线与曲线y=F(x)相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在[0,π]上随机取一个数x,则事件“2sin$\frac{x}{2}$cos$\frac{x}{2}$+cosx≥$\frac{\sqrt{6}}{2}$”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在梯形ABCD中,AB∥CD,AB=2CD,E为BC中点,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则x+y=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$2+\frac{2}{3}={2^2}×\frac{2}{3}\;,\;3+\frac{3}{8}={3^2}×\frac{3}{8}\;,\;4+\frac{4}{15}={4^2}×\frac{4}{15}\;,\;…$,若9+$\frac{a}{b}$=92+$\frac{a}{b}$(a,b为正整数)则a+b=89.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{{-x}^{2},x>0}\end{array}\right.$,不等式f(ax2)+f(1-ax)<0对任意的x∈R都成立,则实数a的取值范围(  )
A.(0,4)B.(-4,0)C.[0,4)D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{3-i}{i}$=(  )
A.1+3iB.-1-3iC.-1+3iD.1-3i

查看答案和解析>>

同步练习册答案