精英家教网 > 高中数学 > 题目详情
16.函数f(x)=2πx2的导数是(  )
A.f′(x)=4πxB.f′(x)=4π2xC.f′(x)=2π2xD.f′(x)=πx

分析 利用导数的运算法则即可得出.

解答 解:f′(x)=4πx.
故选:A.

点评 本题考查了导数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若正项等比数列{an}满足a1-a3=-3,a1-a4=-7,则a5=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知数列{an}的前n项和Sn=2n2-3n+1,求{an}的通项an
(2)在等差数列{an}中,a1=-3,11a5=5a8,求前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F(c,0)且a>b>c>0,设短轴的两端点为D,H,原点O到直线DF的距离为$\frac{\sqrt{3}}{2}$,过原点和x轴不重合的直线与椭圆E相交于C,G两点,且|$\overrightarrow{GF}$|+|$\overrightarrow{CF}$|=4.
(1)求椭圆E的方程;
(2)设O为坐标原点,过点P(0,1)的动直线与椭圆E交于A,B两点,是否存在常数λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值?求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sinx=-$\frac{1}{3}$,且-$\frac{π}{2}$<x<$\frac{π}{2}$,则tan($\frac{π}{2}$+x)=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:
(1)a2+b2+c2≥ab+bc+ac
(2)$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列给出的输入语句、输出语句和赋值语句:
(1)输出语句INPUTa,b,c;
(2)输入语句INPUT x=3;
(3)赋值语句3=A,
则其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与-336°终边相同的角可以表示为(  )
A.k•360°+24°(k∈z)B.k•360°-24°(k∈z)C.k•360°+336°(k∈z)D.k•360°-156°(k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的前n项和为Sn,若4S1,3S2,2S3成等差数列,且S4=15.
(1)求数列{an}的通项公式;
(2)若Sn≤127,求n的最大值.

查看答案和解析>>

同步练习册答案