精英家教网 > 高中数学 > 题目详情
13.设z=$\frac{3+2i}{i}$,其中i为虚数单位,则z的虚部等于-3.

分析 利用复数的运算法则即可得出.

解答 解:z=$\frac{3+2i}{i}$=$\frac{-i(3+2i)}{-i•i}$=-3i+2,则z的虚部为-3.
故答案为:-3.

点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow a$=(-3,1),$\overrightarrow b$=(-1,2),如果向量$\overrightarrow a$+λ$\overrightarrow b$与$\overrightarrow b$垂直,则实数λ=(  )
A.$-\frac{4}{3}$B.1C.-1D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从10人中任选三人去扫地,不同的选法有(  )
A.10种B.1000种C.120种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=x+$\frac{a}{|x|+1}$
(1)当a=4时,求f(x)的单调区间;
(2)若9>a>0,求f(x)在区间[-1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(-2,t)是角α终边上的一点,且sinα=-$\frac{\sqrt{5}}{5}$.
(I)求t、cosα、tanα的值;
(Ⅱ)求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=$\sqrt{1-{x}^{2}}$上一个动点,则$\overrightarrow{OP}$•$\overrightarrow{BA}$的取值范围是[-1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC的两个顶点A、B的坐标分别为A(2,0),B(-2,0),边AC、BC所在直线的斜率之积为λ、求C点的轨迹M的方程,并讨论轨迹M是何曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知正方体ABCD-A1B1C1D1,则AC与平面BDC1所成角的余弦值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设 x,y,z∈R+,且x+y+z=1,求证:$\frac{{2{x^2}}}{y+z}+\frac{{2{y^2}}}{z+x}+\frac{{2{z^2}}}{x+y}≥1$.

查看答案和解析>>

同步练习册答案