精英家教网 > 高中数学 > 题目详情

设函数f(x)=(1+x)2-2ln (1+x).
(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)=x2xa在[0,2]上恰有两个相异实根,求实数a的取值范围.

(1)f(x)的递增区间是(0,+∞),递减区间是(-1,0).
(2)(2-2ln 2,3-2ln 3].

解析试题分析:解 (1)函数的定义域为(-1,+∞),
因为f(x)=(1+x)2-2ln(1+x),
所以f′(x)=2
f′(x)>0,得x>0;由f′(x)<0,得-1<x<0,
所以,f(x)的递增区间是(0,+∞),递减区间是(-1,0).
(2)方程f(x)=x2xa,即xa+1-2ln(1+x)=0,
记g(x)=xa+1-2ln(1+x)(x>-1),
则g′(x)=1-
由g′(x)>0,得x>1;
由g′(x)<0,得-1<x<1.
所以g(x)在[0,1]上单调递减,在[1,2]上单调递增.
为使f(x)=x2xa在[0,2]上恰有两个相异的实根,
只须g(x)=0在[0,1)和(1,2]上各有一个实根,
于是有
解得2-2ln 2<a≤3-2ln 3,
故实数a的取值范围是(2-2ln 2,3-2ln 3].
考点:导数的运用,以及函数与方程
点评:解决的关键是根据导数判定函数单调性,以及函数的零点问题,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率恒成立,求实数的取值范围;(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若上单调递增,在上单调递减,在上单调递增,求实数的值;
(2)当时,求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为偶函数,曲线过点(2,5), .
(1)若曲线有斜率为0的切线,求实数的取值范围;
(2)若当时函数取得极值,确定的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若函数有极值,求的值;
(2)若函数在区间上为增函数,求的取值范围;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数,函数
(Ⅰ)若函数有极大值32,求实数的值;
(Ⅱ)若对,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线在点处的切线与x轴交点的横坐标为an
(1)求an
(2)设,求数到的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为常数,已知函数在区间上是增函数,在区间上是减函数.
(1)设为函数的图像上任意一点,求点到直线的距离的最小值;
(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案