ÒÑÖªÕýÏîÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒº¯Êýf(x)=
1
2
lnx+
x
4
ÔÚx=an´¦µÄÇÐÏßµÄбÂÊΪ
Sn
a
2
n
£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÖ¤£º
1
a13
+
1
a23
+
1
a33
+¡­+
1
an3
£¼
5
32
(n¡ÊN*)
£»
£¨3£©ÊÇ·ñ´æÔÚ·ÇÁãÕûÊý¦Ë£¬Ê¹²»µÈʽ¦Ë(1-
1
a1
)(1-
1
a2
)¡­(1-
1
an
)cos
¦Ðan+1
2
£¼
1
an+1
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ
רÌ⣺µãÁС¢µÝ¹éÊýÁÐÓëÊýѧ¹éÄÉ·¨,²»µÈʽµÄ½â·¨¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©Çó³öÔ­º¯ÊýµÄµ¼º¯Êý£¬µÃµ½º¯ÊýÔÚx=an´¦µÄµ¼Êý£¬¼´
Sn
a
2
n
£¬Óɴ˵õ½ÊýÁеÝÍÆÊ½£¬·Ön=1ºÍn¡Ý2ÌÖÂ۵õ½ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÀûÓ÷ÅËõ·¨µÃµ½
1
an3
£¼
1
16
[
1
(n-1)n
-
1
n(n+1)
]
£¬ÑéÖ¤n=1ʱ²»µÈʽ³ÉÁ¢£¬ÔÙÀûÓÃÁÑÏîÏàÏû·¨Ö¤µÃn¡Ý2ʱ²»µÈʽ³ÉÁ¢£»
£¨3£©°Ñan=2n´úÈëcos
¦Ðan+1
2
£¬²¢ÇÒÁîbn=
1
(1-
1
a1
)(1-
1
a2
)¡­(1-
1
an
)
an+1
£¬Ôò²»µÈʽµÈ¼ÛÓÚ£¨-1£©n+1¦Ë£¼bn£®×÷ÉÌÅжϳöÊýÁÐ{bn}ÊÇÔöº¯Êý£¬È»ºóÀûÓõ¥µ÷ÐÔ·ÖnÎªÆæÅ¼ÊýµÃµ½¦ËµÄȡֵ·¶Î§£¬Ôò·ÇÁãÕûÊý¦Ë¿ÉÇó£®
½â´ð£º £¨1£©½â£ºÓÉf(x)=
1
2
lnx+
x
4
£¬µÃf¡ä(x)=
1
2x
+
1
4
£¬
ÒÀÌâÒ⣬
Sn
an2
=f¡ä(an)=
1
2an
+
1
4
£¬¼´Sn=
an(an+2)
4
£®
µ±n=1ʱ£¬a1=S1=
a1(a1+2)
4
£¬½âµÃa1=2»òa1=0£¨ÉáÈ¥£©£®
µ±n¡Ý2ʱ£¬ÓÉan=Sn-Sn-1=
an(an+2)
4
-
an-1(an-1+2)
4
£¬
µÃan2-an-12=2(an+an-1)£¬
¡ßan£¾0£¬
¡àan+an-1¡Ù0£¬Ôòan-an-1=2£¬
¡à{an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬¹Êan=2n£»
£¨2£©Ö¤Ã÷£º¡ß
1
an3
=
1
(2n)3
=
1
8n•n2
£¼
1
8n(n2-1)

=
1
8(n-1)n(n+1)
=
1
16
[
1
(n-1)n
-
1
n(n+1)
]
£¨n¡Ý2£©£¬
¡àµ±n¡Ý2ʱ£¬
1
a13
+
1
a23
+
1
a33
+¡­+
1
an3
=
1
23
+
1
43
+
1
63
+¡­+
1
(2n)3

£¼
1
23
+
1
16
[(
1
1¡Á2
-
1
2¡Á3
)+(
1
2¡Á3
-
1
3¡Á4
)+¡­+
1
(n-1)n
-
1
n(n+1)
]
+¡­+
1
(n-1)n
-
1
n(n+1)
]

=
1
8
+
1
16
[
1
2
-
1
n(n+1)
]£¼
1
8
+
1
16
¡Á
1
2
=
5
32
£®
µ±n=1ʱ£¬²»µÈʽ×ó±ß=
1
a13
=
1
8
£¼
5
32
ÏÔÈ»³ÉÁ¢£»
£¨3£©½â£ºÓÉan=2n£¬µÃcos
¦Ðan+1
2
=cos(n+1)¦Ð=(-1)n+1
£¬
Éèbn=
1
(1-
1
a1
)(1-
1
a2
)¡­(1-
1
an
)
an+1
£¬Ôò²»µÈʽµÈ¼ÛÓÚ£¨-1£©n+1¦Ë£¼bn£®
bn+1
bn
=
an+1
(1-
1
an+1
)
an+1+1
=
2n+1
(1-
1
2n+2
)
2n+3

=
2n+2
(2n+1)(2n+3)
=
4n2+8n+4
4n2+8n+3
£¾1
£¬
¡ßbn£¾0£¬
¡àbn+1£¾bn£¬ÊýÁÐ{bn}µ¥µ÷µÝÔö£®
¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ£¨-1£©n+1¦Ë£¼bn¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò
¢Ùµ±nÎªÆæÊýʱ£¬µÃ¦Ë£¼(bn)min=b1=
2
3
3
£»
¢Úµ±nΪżÊýʱ£¬µÃ-¦Ë£¼(bn)min=b2=
8
5
15
£¬¼´¦Ë£¾-
8
5
15
£®
×ÛÉÏ£¬¦Ë¡Ê(-
8
5
15
£¬
2
3
3
)
£¬ÓɦËÊÇ·ÇÁãÕûÊý£¬Öª´æÔÚ¦Ë=¡À1Âú×ãÌõ¼þ£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽ×ۺϣ¬ÑµÁ·ÁËÀûÓõ¼ÊýÑо¿¹ýÇúÏßÉÏijµã´¦µÄÇÐÏß·½³Ì£¬ÑµÁ·ÁËÀûÓ÷ÅËõ·¨Ö¤Ã÷²»µÈʽ£¬¿¼²éÁ˺¯Êý¹¹Ôì·¨£¬ÑµÁ·ÁËÀûÓú¯Êýµ¥µ÷ÐÔÇóº¯ÊýµÄ×îÖµ£®ÊôÄѶȽϴóµÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa¡¢b¡¢c·Ö±ðÊÇ¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß£¬Èôa=1£¬b=
3
£¬¡ÏB=60¡ã£¬ÔòAB=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬AC•cosA=3BC•cosB£¬ÇÒcosC=
5
5
£¬ÔòA=£¨¡¡¡¡£©
A¡¢30¡ãB¡¢45¡ã
C¡¢60¡ãD¡¢120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¡°x£¼0¡±ÊÇ¡°ln£¨x+1£©£¼0¡±µÄ£¨¡¡¡¡£©
A¡¢³ä·Ö²»±ØÒªÌõ¼þ
B¡¢±ØÒª²»³ä·ÖÌõ¼þ
C¡¢³ä·Ö±ØÒªÌõ¼þ
D¡¢¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»¸öËÄÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬Ôò´ËËÄÀâÖÁµÄËĸö²àÃæÖеÄ×î´óÃæ»ýÊÇ£¨¡¡¡¡£©
A¡¢3
B¡¢2
5
C¡¢6
D¡¢8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼×¡¢ÒÒÁ½Ãû¹¤ÈËÉú²úµÄÁã¼þ³ß´ç¼Ç³ÉÈçͼËùʾµÄ¾¥Ò¶Í¼£¬ÒÑÖªÁã¼þ³ß´çÔÚÇø¼ä[165£¬180]ÄÚµÄΪºÏ¸ñÆ·£®£¨µ¥Î»£ºmm£©
£¨1£©Çó¼×Éú²úµÄÁã¼þ³ß´çµÄƽ¾ùÖµ£¬ÒÒÉú²úµÄÁã¼þ³ß´çµÄÖÐλÊý£»
£¨2£©ÔÚÒÒÉú²úµÄºÏ¸ñÁã¼þÖÐÈÎÈ¡2¼þ£¬ÇóÖÁÉÙÓÐÒ»¼þÁã¼þ³ß´çÔÚÖÐλÊýÒÔÉϵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µã¹ýF£¬¹ýH£¨-
p
2
£¬0£©ÒýÖ±Ïßl½»´ËÅ×ÎïÏßÓÚA£¬BÁ½µã£®
£¨1£©ÈôÖ±ÏßAFµÄбÂÊΪ2£¬ÇóÖ±ÏßBFµÄбÂÊ£»
£¨2£©Èôp=2£¬µãMÔÚÅ×ÎïÏßÉÏ£¬ÇÒ
FA
+
FB
=t
FM
£¬ÇótµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx+a£¨2-x£©
£¨¢ñ£©ÉèÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßΪl£¬ÈôlÓëÔ²£¨x-3£©2+y2=1ÏàÇУ¬ÇóaµÄÖµ£»
£¨¢ò£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×㣺a2+a4=14£¬S7=70£¬Ôòa7=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸