精英家教网 > 高中数学 > 题目详情

设函数),其导函数为.
(1)当时,求的单调区间;
(2)当时,,求证:.

(1)单调增区间为,单调减区间为;(2)详见解析.

解析试题分析:(1)求单调区间是常规问题,但需注意定义域先行,步骤是:①先求定义域;②后求导数;③令结合定义域得增区间,令结合定义域得减区间,最后结果一定要用区间表示;(2)掌握好执因索果,即分析法在此题中的应用,以及与基本不等式的结合.
试题解析:(1)当时, (
,即:
解得:,所以:函数的单调增区间为
同理:单调减区间为.
(2),所以:


下面证明,有恒成立,
即证:成立,
只需证明:即可,
对此:设

所以:.故命题得证.
考点:1.导数的应用;2.不等式的证明方法;3.创设条件使用基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在区间上存在极值点,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在实数集上的函数
⑴求函数的图象在处的切线方程;
⑵若对任意的恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(k为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
(1)求k的值及的单调区间;
(2)设其中的导函数,证明:对任意,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处都取得极值.
(1)求函数的解析式;
(2)求函数在区间[-2,2]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-ax(a∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若a=1,函数在区间(0,+)上为增函数,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的极大值;
(2)若函数的图象与函数的图象有三个不同的交点,求的取值范围;
(3)设,当时,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)若当,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

某厂生产某种产品件的总成本(万元),又知产品单价的平方与产品件数成反比,生产100件这样的产品的单价为50万元,则产量定为_____________时总利润最大?

查看答案和解析>>

同步练习册答案