设函数.
(1)当时,求函数的单调区间;
(2)若当时,求a的取值范围.
(1)增区间,减区间;(2)
解析试题分析:(1)由得到,求其导数,解不等式得到函数的增区间, 解不等式得到函数的减区间;(2)法一:由当时得: 等价于: 在时恒成立,令,注意到,所以只需上恒成立即可,故有在上恒成立,则所以有.法二:将在时恒成立等价转化为:恒成立函数的图象恒在函数图象的上方,由图象可求得a的取值范围.
试题解析:(1)当时,,
当时,;当时,时,
当时,,
增区间,减区间
(2)法一:,令,则
若,则当时, ,为增函数,而,
从而当时,,即
若,则当时,为减函数,而,从而当时,,即
综上得的取值范围为.
法二: 由当时得: 等价于: 在时恒成立,等价转化为:恒成立函数的图象恒在函数图象的上方,如图:,由于直线恒过定点,而,所以函数图象在点(0,1)处的切线方程为:,故知:,即的取值范围为.
科目:高中数学 来源: 题型:解答题
已知函数,( 为常数,为自然对数的底).
(1)当时,求;
(2)若在时取得极小值,试确定的取值范围;
(3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线(为确定的常数)相切,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)= (a∈R).
(1)求f(x)的极值;
(2)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com