精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的各项均为正,a1=2,Sn是它的前n项和,且Sn=pan2+2pan(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{an•2n}的前n项和Tn
(3)求证:$\frac{{a}_{1}{a}_{2}…{a}_{n}}{({a}_{1}-1)({a}_{2}-1)…({a}_{n}-1)}$>$\sqrt{2n+1}$.

分析 (1)当n=1时,求得p的值,当n≥2时,Sn-1=$\frac{1}{8}$an-12+$\frac{1}{4}$an-1(n∈N*),与Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an(n∈N*)两式相减,整理得(an+an-1)(an-an-1-2)=0,由an+an-1≠0,an-an-1=2,数列{an}是以2为首项,2为公差的等差数列,根据等差数列通项公式求得数列{an}的通项公式;
(2)写出{an•2n}的通项公式,利用乘以公比错位相减法,即可求得Tn
(3)采用数学归纳法证明,根据数学归纳法步骤,当n=1时,$\frac{2}{1}$=2>$\sqrt{3}$,成立,假设当n=k时成立,整理得$\frac{2×4×…×2k}{1×3×…(2k-1)}$>$\sqrt{2k+1}$,当n=k+1时,化简整理即可得到$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}•{a}_{k+1}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)({a}_{k+1}-1)}$>$\sqrt{2(k+1)+1}$.

解答 解:(1)当n=1时,a1=pa12+2pa1,即2=4p+4p,p=$\frac{1}{4}$,
∴Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an(n∈N*),
当n≥2时,Sn-1=$\frac{1}{8}$an-12+$\frac{1}{4}$an-1(n∈N*),
两式相减整理得:(an+an-1)(an-an-1-2)=0,
数列{an}的各项均为正,an+an-1≠0,
∴an-an-1=2,
∴数列{an}是以2为首项,2为公差的等差数列,
数列{an}的通项公式an=2n,
(2)an•2n=2n•2n
数列{an•2n}的前n项和Tn;Tn=2×(1×2+2×22+3×23+…+n•2n),
2Tn=2×(1×22+2×23+3×24+…+n•2n+1),
两式相减得:-Tn=2×(2+22+23+24+…+2n-n•2n+1),
-Tn=2×$\frac{2-{2}^{n+1}}{1-2}$-n•2n+2
∴Tn=2n+2(n-1)+4,
数列{an•2n}的前n项和Tn:Tn=2n+2(n-1)+4;
(3)an=2n,
用数学归纳法证明:
当n=1时,$\frac{2}{1}$=2>$\sqrt{3}$,成立,
假设当n=k,$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)}$>$\sqrt{2k+1}$,
即$\frac{2×4×…×2k}{1×3×…(2k-1)}$>$\sqrt{2k+1}$,
则当n=k+1时,
$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}•{a}_{k+1}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)({a}_{k+1}-1)}$=$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)}$•$\frac{{a}_{k+1}}{{a}_{k+1}-1}$>$\sqrt{2k+1}$•$\frac{{a}_{k+1}}{{a}_{k+1}-1}$,
=$\frac{2(k+1)}{2(k+1)-1}$•$\sqrt{2k+1}$=$\sqrt{\frac{4(k+1)^{2}}{2k+1}}$,
$\frac{4(k+1)^{2}}{2k+1}$=$\frac{4{k}^{2}+8k+4}{2k+1}$=$\frac{(2k+1)^{2}+2(2k+1)+1}{2k+1}$=2k+1+2+$\frac{1}{2k+1}$=2k+3+$\frac{1}{2k+1}$>2k+3,
即当n=k+1时,$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}•{a}_{k+1}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)({a}_{k+1}-1)}$>$\sqrt{2(k+1)+1}$,
故$\frac{{a}_{1}{a}_{2}…{a}_{n}}{({a}_{1}-1)({a}_{2}-1)…({a}_{n}-1)}$>$\sqrt{2n+1}$成立.

点评 本题考查利用递推关系求等差数列的通项公式,利用“错位相减法”求数列的前n项和及数学归纳法求证不等式成立、考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在平面几何中有如下的结论:若正三角形ABC的内切圆的面积为S1,外接圆的面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$.推广到空间几何体中可以得到类似的结论;若正四面体ABCD的内切球的体积为V1,外接球体积为V2,则$\frac{{V}_{2}}{{V}_{1}}$=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$,x∈R)的部分图象如图所示,则函数表达式为(  )
A.y=sin(2x+$\frac{π}{3}}$)B.y=sin(2x-$\frac{π}{6}}$)C.y=cos(4x-$\frac{π}{3}}$)D.y=cos(2x+$\frac{π}{3}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平行四边形ABCD中,AB⊥BD,4AB2+2BD2=1,将此平行四边形沿BD折成直二面角,则三棱锥A-BCD外接球的表面积为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c都是正数,且abc=1,求证:a3+b3+c3≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示的伪代码,则输出的S的值为36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3),且法向量为$\overrightarrow{n}$=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0,类比以上方法,在空间直角坐标系中,经过点B(-2,1,3),且法向量为$\overrightarrow{m}$=(3,-2,4)的平面方程化简后为3x-2y+4z-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为使政府部门与群众的沟通日常化,某城市社区组织“网络在线问政”活动.2015年,该社区每月通过问卷形式进行一次网上问政;2016年初,社区随机抽取了60名居民,对居民上网参政议政意愿进行调查.已知上网参与问政次数与参与人数的频数分布如表:
参与调查问卷次数[0,2)[2,4)[4,6)[6,8)[8,10)[10,12]
参与调查问卷人数814814106
(1)若将参与调查问卷不少于4次的居民称为“积极上网参政居民”,请你根据频数分布表,完成2×2列联表,据此调查你是否有99%的把握认为在此社区内“上网参政议政与性别有关”?
合计
积极上网参政议政8
不积极上网参政议政
合计40
P(k2>k00.1000.0500.010
k02.7063.8416.635
(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出2人参加政府听证会,求选出的2人恰为1男1女的概率.
附:k2=$\frac{{n{{(ac-bd)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)是[-1,1]上的减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是(  )
A.f(sin α)>f(cos β)B.f(cos α)<f(cos β)C.f(cos α)>f(sin β)D.f(sin α)<f(sin β)

查看答案和解析>>

同步练习册答案