分析 (1)当n=1时,求得p的值,当n≥2时,Sn-1=$\frac{1}{8}$an-12+$\frac{1}{4}$an-1(n∈N*),与Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an(n∈N*)两式相减,整理得(an+an-1)(an-an-1-2)=0,由an+an-1≠0,an-an-1=2,数列{an}是以2为首项,2为公差的等差数列,根据等差数列通项公式求得数列{an}的通项公式;
(2)写出{an•2n}的通项公式,利用乘以公比错位相减法,即可求得Tn;
(3)采用数学归纳法证明,根据数学归纳法步骤,当n=1时,$\frac{2}{1}$=2>$\sqrt{3}$,成立,假设当n=k时成立,整理得$\frac{2×4×…×2k}{1×3×…(2k-1)}$>$\sqrt{2k+1}$,当n=k+1时,化简整理即可得到$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}•{a}_{k+1}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)({a}_{k+1}-1)}$>$\sqrt{2(k+1)+1}$.
解答 解:(1)当n=1时,a1=pa12+2pa1,即2=4p+4p,p=$\frac{1}{4}$,
∴Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an(n∈N*),
当n≥2时,Sn-1=$\frac{1}{8}$an-12+$\frac{1}{4}$an-1(n∈N*),
两式相减整理得:(an+an-1)(an-an-1-2)=0,
数列{an}的各项均为正,an+an-1≠0,
∴an-an-1=2,
∴数列{an}是以2为首项,2为公差的等差数列,
数列{an}的通项公式an=2n,
(2)an•2n=2n•2n,
数列{an•2n}的前n项和Tn;Tn=2×(1×2+2×22+3×23+…+n•2n),
2Tn=2×(1×22+2×23+3×24+…+n•2n+1),
两式相减得:-Tn=2×(2+22+23+24+…+2n-n•2n+1),
-Tn=2×$\frac{2-{2}^{n+1}}{1-2}$-n•2n+2,
∴Tn=2n+2(n-1)+4,
数列{an•2n}的前n项和Tn:Tn=2n+2(n-1)+4;
(3)an=2n,
用数学归纳法证明:
当n=1时,$\frac{2}{1}$=2>$\sqrt{3}$,成立,
假设当n=k,$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)}$>$\sqrt{2k+1}$,
即$\frac{2×4×…×2k}{1×3×…(2k-1)}$>$\sqrt{2k+1}$,
则当n=k+1时,
$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}•{a}_{k+1}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)({a}_{k+1}-1)}$=$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)}$•$\frac{{a}_{k+1}}{{a}_{k+1}-1}$>$\sqrt{2k+1}$•$\frac{{a}_{k+1}}{{a}_{k+1}-1}$,
=$\frac{2(k+1)}{2(k+1)-1}$•$\sqrt{2k+1}$=$\sqrt{\frac{4(k+1)^{2}}{2k+1}}$,
$\frac{4(k+1)^{2}}{2k+1}$=$\frac{4{k}^{2}+8k+4}{2k+1}$=$\frac{(2k+1)^{2}+2(2k+1)+1}{2k+1}$=2k+1+2+$\frac{1}{2k+1}$=2k+3+$\frac{1}{2k+1}$>2k+3,
即当n=k+1时,$\frac{{a}_{1}•{a}_{2}•…•{a}_{k}•{a}_{k+1}}{({a}_{1}-1)({a}_{2}-1)…({a}_{k}-1)({a}_{k+1}-1)}$>$\sqrt{2(k+1)+1}$,
故$\frac{{a}_{1}{a}_{2}…{a}_{n}}{({a}_{1}-1)({a}_{2}-1)…({a}_{n}-1)}$>$\sqrt{2n+1}$成立.
点评 本题考查利用递推关系求等差数列的通项公式,利用“错位相减法”求数列的前n项和及数学归纳法求证不等式成立、考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(2x+$\frac{π}{3}}$) | B. | y=sin(2x-$\frac{π}{6}}$) | C. | y=cos(4x-$\frac{π}{3}}$) | D. | y=cos(2x+$\frac{π}{3}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 参与调查问卷次数 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10) | [10,12] |
| 参与调查问卷人数 | 8 | 14 | 8 | 14 | 10 | 6 |
| 男 | 女 | 合计 | |
| 积极上网参政议政 | 8 | ||
| 不积极上网参政议政 | |||
| 合计 | 40 |
| P(k2>k0) | 0.100 | 0.050 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sin α)>f(cos β) | B. | f(cos α)<f(cos β) | C. | f(cos α)>f(sin β) | D. | f(sin α)<f(sin β) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com