精英家教网 > 高中数学 > 题目详情
14.在(a-b)n(n∈N+)展开式中,第r项的系数为${({-1})^{r-1}}C_n^{r-1}$.

分析 由条件利用二项式展开式的通项公式,求得第r项的系数.

解答 解:利用二项式展开式的通项公式可得(a-b)n(n∈N+)展开式中,第r项为Tr=${C}_{n}^{r-1}$•an+1-r•(-1)r-1•br-1
故第r项的系数为 ${({-1})^{r-1}}C_n^{r-1}$,
故答案为:${({-1})^{r-1}}C_n^{r-1}$.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若$\sqrt{(x-5)({x}^{2}-25)}$=(5-x)$\sqrt{x+5}$,那么x∈[-5,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,a3+a4+a5=12,那么a1+a7=(  )
A.3B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)计算:$\frac{1}{{\sqrt{2}-1}}-{(\frac{3}{5})^0}+{(\frac{9}{4})^{-0.5}}+\root{4}{{{{(\sqrt{2}-π)}^4}}}$;
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=2,求$\frac{{{x^4}+{x^{-4}}-3}}{{{x^2}+{x^{-2}}-1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一点沿直线运动,如果由始点起经过t秒后的位移是S=$\frac{1}{4}{t^4}-\frac{3}{5}{t^3}+2{t^2}$,那么速度为零的时刻是t=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${∫}_{0}^{2π}$|cosx|dx等于(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求二次函数y=-2x2+6x在下列定义域上的值域;
(1)定义域为{x∈Z丨0≤x≤3};     
(2)定义域为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=|x+1|+|x+2|+…+|x+2013|+|x-1|+|x-2|+…+|x-2013|(x∈R),且集合M={a|f(a2-a-2)=f(a+1)},则集合N={f(a)|a∈M}的元素个数有(  )
A.2个B.3个C.4个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.证明:若x2+y2=0.则x=y=0.
证.假设x≠0或y≠0.
若x≠0,则y>0,
∴x2+y2>0与x+2y2=0矛盾;
若y≠0,则x>0,
∴x2+y2>0与x2+y2=0矛盾,
所以假设不成立,
从而x=y=0成立.

查看答案和解析>>

同步练习册答案