精英家教网 > 高中数学 > 题目详情
已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证: ();
(Ⅲ)求面积的最大值.
(Ⅰ)椭圆W的方程为
(Ⅱ)见解析
(Ⅲ)面积的最大值为


(Ⅰ)设椭圆W的方程为,由题意可知
解得
所以椭圆W的方程为.……………………………………………4分
(Ⅱ)解法1:因为左准线方程为,所以点坐标为.于是可设直线 的方程为
.
由直线与椭圆W交于两点,可知
,解得
设点的坐标分别为,

因为
所以.
又因为




所以.   ……………………………………………………………10分
解法2:因为左准线方程为,所以点坐标为.
于是可设直线的方程为,点的坐标分别为,
则点的坐标为
由椭圆的第二定义可得
,
所以三点共线,即.…………………………………10分
(Ⅲ)由题意知




当且仅当时“=”成立,
所以面积的最大值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点PQ
k的取值范围;
(Ⅲ)已知点M,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量共线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,O为坐标原点,已知点
若点C满足,点C的轨迹与抛物线交于A、B两点.
(I)求证:
(II)在轴正半轴上是否存在一定点,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知平面上的动点及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是,且·。(1)求动点P的轨迹C的方程;
(2)已知直线与曲线C交于M,N两点,且直线BM,BN的斜率都存在并满足·,求证:直线过原点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知直线,曲线
(1)若且直线与曲线恰有三个公共点时,求实数的取值;
(2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点Py轴作垂线段PP′,P′为垂足.
(1)求线段PP′中点M的轨迹C的方程;
(2)过点Q(-2,0)作直线l与曲线C交于AB两点,设N是过点,且以为方向向量的直线上一动点,满足O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
的公共弦过椭圆的右焦点。
⑴当轴时,求的值,并判断抛物线的焦点是否在直线上;
⑵若,且抛物线的焦点在直线上,求的值及直线AB的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A(-2,0),动点B是圆F为圆心)上一点,线段AB的垂直平分线交BFP.
(1)求动点P的轨迹方程;
(2)是否存在过点E(0,-4)的直线lP点的轨迹于点R,T,且满足 (O为原点),若存在,求直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线a>0,b>0)的一条渐近线为,离心率,则双曲线方程为
A.="1"B.
C.D.

查看答案和解析>>

同步练习册答案