精英家教网 > 高中数学 > 题目详情
已知定点A(-2,0),动点B是圆F为圆心)上一点,线段AB的垂直平分线交BFP.
(1)求动点P的轨迹方程;
(2)是否存在过点E(0,-4)的直线lP点的轨迹于点R,T,且满足 (O为原点),若存在,求直线l的方程,若不存在,请说明理由.
(1)(2)
(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8
∴|PA|+|PF|=8>|AF|
∴P点轨迹为以A、F为焦点的椭圆…………………………3分
设方程为
………………………5分
(2)假设存在满足题意的直线l,其斜率存在,设为k,设

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证: ();
(Ⅲ)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若过点作直线与抛物线有且只有一个公共点,则这样的直线有(    )
A.一条B.两条C.三条D.四条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,下列三图中的多边形均为正多边形,M、N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图中的双曲线的离心率分别为e1,e2,e3,则                                  (   )
A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-, 直线ly轴交于点P(0,m),与椭圆C交于相异两点A、B,且
(1)求椭圆方程;
(2)若,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



(1)求动圆圆心M的轨迹方程;
(2)过原点且倾斜角为的直线交(1)中轨迹P、Q两点,PQ的中垂线交轴N. 求三角形PQN的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知点C的坐标是(2,2),过点C的直线CA与x轴交于点A,过点C且与直线CA垂直的

直线CB与y轴交于点B.设点M是线段AB的中点,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在中,,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率的倒数和为      (   )
A.           B.     C.          D.

查看答案和解析>>

同步练习册答案