精英家教网 > 高中数学 > 题目详情
(本题满分15分)已知直线,曲线
(1)若且直线与曲线恰有三个公共点时,求实数的取值;
(2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。
解(Ⅰ)分两种情况:
1)有惟一解,
即x2 + x + b – 2 =0在(–)内有一解,
由△=" 1" – 4b + 8 =" 0," 得,符合.                                3分
2)直线过点(–,0), 得0 = –+ b ,得或.                 2分
(Ⅱ)由,得x2 – kx – 3 =0,
则有:, 且.             2分
,得x2 + kx –1 =0,
则有:,且kÎR.                        2分
所以
      2分
= =,且
令t =" k2" ,则
是增函数,
所以,.                                     4分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设点在直线上,过点作双曲线的两条切线,切点为,定点

(1)求证:三点共线;
(2)过点作直线的垂线,垂足为,试求的重心所在曲线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证: ();
(Ⅲ)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),Ac,0)三点,其中c>0.
(1)求⊙M的标准方程(用含的式子表示);
(2)已知椭圆(其中)的左、右顶点分别为DB
Mx轴的两个交点分别为AC,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若ABMOCDO为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).
(1)求椭圆C的方程;
(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的离心率为                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与双曲线相交于两点,则=_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,函数的图象是一条连续不断的曲线,则       

查看答案和解析>>

同步练习册答案