精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).
(1)求椭圆C的方程;
(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.
(1)+=1(2)3x-8y+19=0
(1)椭圆经过点(2,-3)
+="1" ……………………………………………………………………………3分
又 e==,解得:…………………………………………5分
所以椭圆方程为+=1………………………………………………………………6分
(2)显然M在椭圆内,设A(x1,y1),B(x2,y2)是以M为中点的弦的两个端点,
+=1,+=1………………………………………………………………8分
相减得:=0…………………………………………………10分
整理得:k=-=,得:y-2=(x+1)即:3x-8y+19=0………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆的两焦点和短轴的两端点正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为.

(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,AB 是圆C:
的任一条直径,求
最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是抛物线上的一个动点,则点到点的距离与点到该抛物线准线的距离之和的最小值为
A.3B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与双曲线,有如下信息:联立方程组消去后得到方程,分类讨论:(1)当时,该方程恒有一解;(2)当时,恒成立。在满足所提供信息的前提下,双曲线离心率的取值范围是             (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知直线,曲线
(1)若且直线与曲线恰有三个公共点时,求实数的取值;
(2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点与平面上两定点连线的斜率的积为定值
(1)试求动点的轨迹方程
(2)设直线与曲线交于M.N两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点Py轴作垂线段PP′,P′为垂足.
(1)求线段PP′中点M的轨迹C的方程;
(2)过点Q(-2,0)作直线l与曲线C交于AB两点,设N是过点,且以为方向向量的直线上一动点,满足O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线与直线所围成的封闭图形的面积为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左、右焦点分别为,其一条渐近线方程为,点在该双曲线上,则

查看答案和解析>>

同步练习册答案