精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点PQ
k的取值范围;
(Ⅲ)已知点M,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量共线?如果存在,求出k的值;如果不存在,请说明理由.

(Ⅰ)
(Ⅱ)
(Ⅲ)见解析

(Ⅰ) 设Cx, y),
, ,
,
∴由定义知,动点C的轨迹是以AB为焦点,长轴长为2的椭圆除去与x轴的两个交点.
. ∴.
W:   . …………………………………………… 2分
(Ⅱ) 设直线l的方程为,代入椭圆方程,得.
整理,得.        ①………………………… 5分
因为直线l与椭圆有两个不同的交点PQ等价于
,解得.
∴满足条件的k的取值范围为………… 7分
(Ⅲ)设Px1,y1),Q(x2,y2),则=(x1+x2y1+y2),
由①得.                ②
               ③
因为,所以.……………………… 11分
所以共线等价于.
将②③代入上式,解得.
所以不存在常数k,使得向量共线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证: ();
(Ⅲ)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知过点,0)()的动直线交抛物线两点,点与点关于轴对称.(I)当时,求证:
(II)对于给定的正数,是否存在直线,使得被以为直径的圆所截得的弦长为定值?如果存在,求出的方程;如果不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的离心率为                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,有一个以为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求:
(Ⅰ)点M的轨迹方程;     (Ⅱ)的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若过点作直线与抛物线有且只有一个公共点,则这样的直线有(    )
A.一条B.两条C.三条D.四条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线.
(1)求点的轨迹方程;
(2)设圆,且圆心在曲线上,是圆轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,下列三图中的多边形均为正多边形,M、N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图中的双曲线的离心率分别为e1,e2,e3,则                                  (   )
A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在中,,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率的倒数和为      (   )
A.           B.     C.          D.

查看答案和解析>>

同步练习册答案