精英家教网 > 高中数学 > 题目详情
某物流公司拟建造如图所示的有底容器(不计厚度,长度单位:米),其中容器的下端为圆柱形,上端顶盖为半球形,按照设计要求容器的体积为
112π
3
立方米,且h≥4r.假设该容器的建造费用仅与表面积有关.已知圆柱形部分与底部每平方米建造费用为3千元,半球形部分每平方米建造费用为
15
2
千元.设该容器的建造费用为y千元.
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.(注:球体积V=
4
3
πr3;球表面积S=4πr2
考点:函数模型的选择与应用,函数解析式的求解及常用方法,组合几何体的面积、体积问题
专题:导数的综合应用
分析:(1)由圆柱和球的体积的表达式,得到h和r的关系.再由圆柱和球的表面积公式建立关系式,将表达式中的l用r表示.并注意到写定义域时,利用h≥4r,求出自变量r的范围.
(2)用导数的知识解决,注意到定义域的限制,在区间(0,2]中,极值未必存在,将极值点在区间内和在区间外进行分类讨论.
解答: 解:(1)由体积V=
1
2
×
4
3
πr3+πr2h=
112π
3
,解得h=
112-2r3
3r2

∴y=2πrh×3+2πr2×
15
2
=6πr×
112-2r3
3r2
+15πr2
=π•
112+13r3
r

又h≥4r,即
112-2r3
3r2
≥4r
,解得0<r≤2.
∴其定义域为(0,2].
(2)由(1)得,y=π•
112+13r3
r
=
112
r
+13r2
=
56
r
+
56
r
+13r2
≥3
3
56
r
×
56
r
×13r2
=4
3637

当且仅当r=
2
91
13
∈(0,2]s时取等号.
建造费用最小时r=
2
91
13
点评:利用导数的知识研究函数单调性,函数最值问题是高考经常考查的知识点,同时分类讨论的思想也蕴含在其中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2-
54
x
(x≠0)
(1)求x=3处的切线方程;
(2)求f(x) 的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x2+1

(1)求f(x)的极大值和极小值,并画出函数f(x)的草图
(2)根据函数图象,如果方程f(x)-m=0(m∈R)有且仅有两个不同的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为
1
2
,点P、A、B在该椭圆上,且P坐标为(2,3),线段AB的中点T在直线OP上,且A、O、B三点不共线.
(1)求椭圆方程;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(π-x)-cosx(x∈R).
(1)求f(0)的值;
(2)求函数f(x)的最小正周期及最大、小值;
(3)若f(α)=
2
α∈(
π
2
,π),求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-lnx
(1)当a>0,求f(x)的单调区间;
(2)若f(x)≥1在x>0时恒成立,求a的取值范围;
(3)设a=1,b>1,求证:在区间(1,b)上有唯一的实数x0,使得f′(x0)=
f(b)-f(1)
b-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
a-1
x
-lnx-1,其中a>0.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}为等差数列,前n项和为Sn,已知a2=2,S5=15,
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=
an
2n
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设计求1+3+5+7+…+31的算法,并画出相应的程序框图.

查看答案和解析>>

同步练习册答案