精英家教网 > 高中数学 > 题目详情
4.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=(  )
A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]

分析 求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.

解答 解:由M={x|x2=x}={0,1},
N={x|lgx≤0}=(0,1],
得M∪N={0,1}∪(0,1]=[0,1].
故选:A.

点评 本题考查了并集及其运算,考查了对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知样本数据 x1,x2,…,xn的均值$\overline{x}$=5,则样本数据 2x1+1,2x2+1,…,2xn+1 的均值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC是边长为2的等边三角形,已知向量$\vec a、\vec b$满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论中正确的是①④⑤.(写出所有正确结论得序号)
①$\vec a$为单位向量;②$\vec b$为单位向量;③$\vec a⊥\vec b$;④$\overrightarrow{b}$∥$\overrightarrow{BC}$;⑤(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.
(Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知向量$\overrightarrow{m}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(sinx,cosx),x∈(0,$\frac{π}{2}$).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对任意向量$\overrightarrow{a}$、$\overrightarrow{b}$,下列关系式中不恒成立的是(  )
A.|$\overrightarrow{a}•\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|B.|$\overrightarrow{a}-\overrightarrow{b}$|≤||$\overrightarrow{a}$|-|$\overrightarrow{b}$||C.($\overrightarrow{a}+\overrightarrow{b}$)2=|$\overrightarrow{a}+\overrightarrow{b}$|2D.($\overrightarrow{a}+\overrightarrow{b}$)•($\overrightarrow{a}-\overrightarrow{b}$)=$\overrightarrow{a}$2-$\overrightarrow{b}$2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设fn(x)是等比数列1,x,x2,…,xn的各项和,其中x>0,n∈N,n≥2.
(Ⅰ)证明:函数Fn(x)=fn(x)-2在($\frac{1}{2}$,1)内有且仅有一个零点(记为xn),且xn=$\frac{1}{2}$+$\frac{1}{2}$x${\;}_{n}^{n+1}$;
(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为gn(x),比较fn(x)和gn(x)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则(  )
A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2
C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=nx-xn,x∈R,其中n∈N,且n≥2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);
(Ⅲ)若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:|x2-x1|<$\frac{a}{1-n}$+2.

查看答案和解析>>

同步练习册答案