精英家教网 > 高中数学 > 题目详情
15.△ABC是边长为2的等边三角形,已知向量$\vec a、\vec b$满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论中正确的是①④⑤.(写出所有正确结论得序号)
①$\vec a$为单位向量;②$\vec b$为单位向量;③$\vec a⊥\vec b$;④$\overrightarrow{b}$∥$\overrightarrow{BC}$;⑤(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{BC}$.

分析 利用向量的三角形法则以及向量数量积的公式对各结论分别分析选择.

解答 解:△ABC是边长为2的等边三角形,已知向量$\vec a、\vec b$满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,
则$\overrightarrow{a}$=$\frac{1}{2}\overrightarrow{AB}$,AB=2,所以|$\overrightarrow{a}$|=1,即$\overrightarrow{a}$是单位向量;①正确;
因为$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$=2$\overrightarrow{a}+\overrightarrow{b}$,所以$\overrightarrow{BC}=\overrightarrow{b}$,故|$\overrightarrow{b}$|=2;故②错误;④正确;
$\overrightarrow{a},\overrightarrow{b}$夹角为120°,故③错误;
⑤(4$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{BC}$=4$\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=4×1×2×cos120°+4=-4+4=0;故⑤正确.
故答案为:①④⑤.

点评 本题考查了向量的数量积运用;注意三角形的内角与向量的夹角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd,则$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(2)$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$是|a-b|<|c-d|的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设a>0,b>0,且a+b=$\frac{1}{a}$+$\frac{1}{b}$.证明:
(ⅰ)a+b≥2;
(ⅱ)a2+a<2与b2+b<2不可能同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$,),k∈zB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈z
C.(k-$\frac{1}{4}$,k+$\frac{3}{4}$),k∈zD.($2k-\frac{1}{4}$,2k+$\frac{3}{4}$),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=(  )
A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a≥b>0,求证:2a3-b3≥2ab2-a2b.

查看答案和解析>>

同步练习册答案