精英家教网 > 高中数学 > 题目详情
已知数列{an}是公差大于零的等差数列,数列{bn}为等比数列,且a1=1,b1=2,b2-a2=1,a3+b3=13
(Ⅰ)求数列{an}和{bn}的通项公式
(Ⅱ)设cn=anbn+1,求数列{
1
cn
}前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知得:
2q-(1+d)=1
1+2d+2q2=13
,由此能求出数列{an}和{bn}的通项公式.
(Ⅱ)利用裂项求和法能求出数列{
1
cn
}前n项和Tn
解答: (本小题满分10分)
解:(Ⅰ)设数列{an}的公差为d(d>0),数列{bn}的公比为q
由已知得:
2q-(1+d)=1
1+2d+2q2=13

解得:
d=-10
q=-4
d=2
q=2
(3分)
因为d>0,所以d=2,q=2,
an=1+2(n-1)=2n-1,bn=2×2n-1=2n
an=2n-1(n∈N*),bn=2n(n∈N*).(6分)
(Ⅱ)Tn=
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)

=
n
2n+1
.(10分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知切线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线L的参数方程为
x=1-
1
2
t
y=2+
3
2
t
(t为参数).
(1)写出直线L与曲线C的直角坐标系下的方程;
(2)设曲线C经过伸缩变换
x′=x
y′=2y
,得到曲线C′,判断L与切线C′交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆内接四边形ABCD的边AB=1,BC=3,CD=DA=2.
(Ⅰ)求角C的大小和BD的长;
(Ⅱ)求四边形ABCD的面积及外接圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2
2
=1,过点A(3,0)作直线l与C交于P、Q两点,若PQ的长等于双曲线C的实轴长的4倍,求l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2
3
sin
x
4
,2),
n
=(cos
x
4
,cos2
x
4
).函数f(x)=
m
n

(Ⅰ)若f(x)=
1
2
,求cos(x+
π
3
)的值;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sin
πx
m
,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
4
+
y2
3
=1的左、右顶点分别为A1,A2,点P在C上且直线PA2的斜率的取值范围是[-3,-1],那么直线PA1斜率的取值范围是(  )
A、[
1
4
3
4
]
B、[
1
2
3
4
]
C、[
1
2
,1]
D、[
3
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

tan300°+
cos(-4050)
sin7650
的值是(  )
A、1+
3
B、1-
3
C、-1-
3
D、-1+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+4x+2b-4a,当x∈(-∞,-2)∪(6,+∞)时,f(x)<0;当x∈(-2,6)时,f(x)>0.
(Ⅰ)求a、b的值;
(Ⅱ)若实数m>0,且f(x)>0的一个充分不必要条件是{x|m<x<2m+4},求m的取值范围;
(Ⅲ)设F(x)=-kf(x)+4(k+1)x+2(6k-1),当k取何值时,对?x∈[0,2],函数F(x)的值恒为负数?

查看答案和解析>>

同步练习册答案