精英家教网 > 高中数学 > 题目详情
2.若α为锐角(单位为弧度),试利用单位圆及三角函数线,比较α、sinα、tanα之间的大小关系.

分析 由题意作出三角函数线,进而比较S△AOP,S扇形AOP,S△AOT的大小,可得答案.

解答 解:在直角坐标系中结合单位圆作出锐角α的正弦线和正切线,

由图可知sinα=MP,α=$\widehat{AP}$,tanα=AT,
∵S△AOP=$\frac{1}{2}$×MP×1=$\frac{1}{2}$sinα,
S扇形AOP=$\frac{1}{2}$×$\widehat{AP}$×1=$\frac{1}{2}$α,
S△AOT=$\frac{1}{2}$×AT×1=$\frac{1}{2}$tanα,
∵S△AOP<S扇形AOP<S△AOT
∴MP<$\widehat{AP}$<AT,
即sinα<α<tanα,

点评 本题考查单位圆与三角函数线,难度不大,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若x>$\frac{3}{2}$,则$\frac{8{x}^{2}-22x+23}{2x-3}$的最小值为9;此时x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=(x-a)(x-b)(x-c),其中a,b,c为常数.
(1)求证:f′(x)=(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c);
(2)若f′(x)≥0恒成立,求证:f(x)的图象关于一定点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.现有一段长为18m的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是(  )
A.1 mB.1.5 mC.0.75 mD.0.5 m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示是水平放置的三角形的直观图,AB与y轴平行,AB=OA,则三角形AOB是(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-ax-1.
(1)讨论f(x)的单调性;
(2)若f(x)在R上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.P(1,1)是椭圆$\frac{x^2}{3}$+$\frac{y^2}{2}$=1内一点,过P的直线l交椭圆于A、B两点.
(1)若P是AB的中点,求直线l的方程;
(2)若以AB为直径的圆经过原点,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设m、n是两条不同的直线,α、β是两个不重合的平面,则下列命题中正确的是(  )
A.若m∥α,m∥n,则n∥αB.若m⊥α,n⊥β,则m⊥nC.若m⊥α,m∥β,则α⊥βD.若α⊥β,n?α,则n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.讨论函数f(x)=aln(x+1)+$\frac{x-1}{x+1}$,x∈(-1,+∞)的单调性.

查看答案和解析>>

同步练习册答案