分析 先求出函数的导数,通过讨论a的范围,判断导函数的符号,从而求出函数的单调区间.
解答 解:f(x)=aln(x+1)+$\frac{x-1}{x+1}$=aln(x+1)+1-$\frac{2}{x+1}$,x∈(-1,+∞),
∴f′(x)=$\frac{a}{x+1}$+$\frac{2}{{(x+1)}^{2}}$=$\frac{ax+a+2}{{(x+1)}^{2}}$,
①a≥0时:f′(x)>0,f(x)在(-1,+∞)单调递增;
②-2<a<0时:令f′(x)>0,解得:0<x<-$\frac{a+2}{a}$,令f′(x)<0,解得:x>-$\frac{a+2}{a}$,
∴f(x)在(0,-$\frac{a+2}{a}$)递增,在(-$\frac{a+2}{a}$,+∞)递减;
③a≤-2时:x=-$\frac{a+2}{a}$<-1,
∴f′(x)<0,f(x)在(-1,+∞)单调递减;
点评 本题考查了函数的单调性问题,考查导数的应用,以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{e}$ | B. | $-\frac{1}{e}$ | C. | $\frac{2}{e}$ | D. | $-\frac{2}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com