精英家教网 > 高中数学 > 题目详情

【题目】已知定义在区间上的函数.

(1)求函数的单调区间;

(2)若不等式恒成立,求的取值范围.

【答案】见解析.

【解析】试题分析:(1)函数求导得,讨论,根据导数正负得单调性;

(2)不等式恒成立,得,结合(1)的单调性,只需即可,当易得满足,当时,,令,,令,通过求导得为减函数,且,进而得,从而得解.

试题解析:

①当,.上的增函数.

②当, ,,

的增区间为减区间为

Ⅱ)由不等式,恒成立,得不等式,

恒成立.

①当,由(Ⅰ)知上的增函数,,即当, 不等式,恒成立.

②当,, .

,.

要使不等式,恒成立,

只要.

.

上的减函数,又,

,则,即,解得,

综合①, ②得,的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1若方程上有实数根求实数的取值范围

2上的最小值为求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的最小值;

(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,过且与轴垂直的直线与椭圆在第一象限内的交点为,且.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

2)当时,求最大的整数使得时,函数图象上的点都在

所表示的平面区域内(含边界.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018海南高三阶段性测试(二模)如图,在直三棱柱中, ,点的中点,点上一动点.

I)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.

II)若点的中点且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,已知直线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的极坐标为,直线与曲线的交点为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

Ⅰ)当时,求函数的单调区间;

Ⅱ)当时,求函数上的最大值M

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,平面分别为线段上的点,且.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案