精英家教网 > 高中数学 > 题目详情

【题目】已知圆C的圆心在坐标原点,且与直线l1:x﹣y﹣2 =0相切 (Ⅰ)求直线l2:4x﹣3y+5=0被圆C所截得的弦AB的长.
(Ⅱ)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程
(Ⅲ) 若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.

【答案】解:(Ⅰ)由题意得:圆心(0,0)到直线l1:x﹣y﹣2 的距离为圆的半径, r= =2,所以圆C的标准方程为:x2+y2=4,
所以圆心到直线l2的距离d=

(Ⅱ)因为点G(1,3),所以
所以以G点为圆心,线段GM长为半径的圆G方程:(x﹣1)2+(y﹣3)2=6 (1)
又圆C方程为:x2+y2=4 (2),由(1)﹣(2)得直线MN方程:x+3y﹣4=0
(Ⅲ)设直线l的方程为:y=﹣x+b联立x2+y2=4得:2x2﹣2bx+b2﹣4=0,
设直线l与圆的交点P(x1 , y1),Q(x2 , y2),
由△=(﹣2b)2﹣8(b2﹣4)>0,得b2<8,x1+x2=b, (3)
因为∠POQ为钝角,所以
即满足x1x2+y1y2<0,且 不是反向共线,
又y1=﹣x1+b,y2=﹣x2+b所以
由(3)(4)得b2<4,满足△>0,即﹣2<b<2,
反向共线时,直线y=﹣x+b过原点,此时b=0,不满足题意,
故直线l纵截距的取值范围是﹣2<b<2,且b≠0
【解析】(Ⅰ)由直线与圆相交的性质可知,( 2=r2﹣d2 , 要求AB,只要求解圆心到直线4x﹣3y+5=0的距离.即可求直线l2:4x﹣3y+5=0被圆C所截得的弦AB的长.(Ⅱ)求出圆C的方程以及以G(1,3)为圆心,QM为半径的圆,利用圆系方程求直线MN的方程.(Ⅲ)设直线l的方程为:y=﹣x+b联立x2+y2=4,设直线l与圆的交点P(x1 , y1),Q(x2 , y2),利用△>0,以及韦达定理,通过∠POQ为钝角,求出﹣2<b<2,当 反向共线时,直线y=﹣x+b过原点,此时b=0,不满足题意,即可得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 已知a3=24,a6=18.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为.经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.

某厂现有个标准水量的A级水池,分别取样、检测. 多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有样本不达标,则混合样本的化验结果必不达标.若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放.

现有以下四种方案,

方案一:逐个化验;

方案二:平均分成两组化验;

方案三:三个样本混在一起化验,剩下的一个单独化验;

方案四:混在一起化验.

化验次数的期望值越小,则方案的越“优”.

(Ⅰ) 若,求个A级水样本混合化验结果不达标的概率;

(Ⅱ) 若,现有个A级水样本需要化验,请问:方案一,二,四中哪个最“优”?

(Ⅲ) 若“方案三”比“方案四”更“优”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求证:D1C⊥AC1
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为(a+1)x+y+2﹣a=0(a∈R)
(1)若直线l在两坐标轴上的截距相等,则直线l的方程是
(2)若直线l不经过第二象限,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.

(Ⅰ)证明:A1O⊥平面ABC;

(Ⅱ)求三棱锥C1﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ为常数), 求:
(1) 及| |;
(2)若f(x)的最小值是 ,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2ax+b(a>0)在区间[﹣1,4]上有最大值10和最小值1.设g(x)=
(1)求a、b的值;
(2)证明:函数g(x)在[ ,+∞)上是增函数;
(3)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案