精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,焦点在x轴上,其准线过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点;又抛物线与双曲线的一个交点为M(
3
2
,-
6
),求抛物线和双曲线的方程.
考点:双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:首先根据抛物线的准线过双曲线的焦点,可得p=2c,再利用抛物线与双曲线同过交点(
3
2
,-
6
),求出c、p的值,进而结合双曲线的性质a2+b2=c2,求解即可.
解答: 解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.
设抛物线方程为y2=4c•x,
∵抛物线过点(
3
2
,-
6
),∴6=4c•
3
2

∴c=1,故抛物线方程为y2=4x.
又双曲线
x2
a2
-
y2
b2
=1过点(
3
2
,-
6
),
9
4a2
-
6
b2
=1
.①
又a2+b2=c2=1.②
由①②可得a2=
1
4
或a2=9(舍).
∴b2=
3
4

故双曲线方程为:4x2-
4y2
3
=1.
点评:本题考查了抛物线和双曲线方程的求法:待定系数法,熟练掌握圆锥曲线的性质是解题的关键,同时考查了学生的基本运算能力与运算技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
x
,若f′(x0)=
1
2
,则x0等于(  )
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

29π
6
是(  )
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l1,l2的方向向量分别为
a
=(2,4,-4),
b
=(-6,9,6),则(  )
A、l1∥l2
B、l1⊥l2
C、l1与l2相交但不垂直
D、以上均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线的左右焦点为F1,F2,P为双曲线上一点,求证:若PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2),
b
=(-3,2),若k
a
+
b
a
-3
b
垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
4x+2

(Ⅰ)求f(x)+f(1-x),x∈R的值;
(Ⅱ)若数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)(n∈N*),求数列{an}的通项公式;
(Ⅲ)若数列{bn}满足bn=2n+1•an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an=2an-1+3(n>2,且n∈N*),
(1)求证数列{an+3}是等比数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱ANCD-A1B1C1D1中,已知DC=DD1=2AD=2AB=2,AD⊥DC,AB∥DC.
(1)求证:D1C⊥AC1
(2)求直线D1C与平面A1BD所成的角;
(3)求点C1到平面A1BD的距离.

查看答案和解析>>

同步练习册答案