精英家教网 > 高中数学 > 题目详情
16.已知点A(l,2)在直线x+y+a=0的上方的平面区域,则实数a的取值范围是a>-3.

分析 根据二元一次不等式表示平面区域以及点与不等式的关系进行求解即可.

解答 解:∵点A(l,2)在直线x+y+a=0的上方的平面区域,即x+y+a>0,
∴1+2+a>0,即a>-3,
故答案为:a>-3

点评 本题主要考查二元一次不等式表示平面区域,根据点与不等式的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)满足:对任意的x1,x2∈R(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面各组函数中为相等函数的是(  )
A.f(x)=$\sqrt{{{({x-1})}^2}}$,g(x)=x-1B.f(x)=$\sqrt{{x^2}-1},g(x)=\sqrt{x-1}•\sqrt{x+1}$
C.f(x)=x-1,g(x)=$\frac{1}{x-1}$D.f(x)=x0,g(x)=$\frac{1}{x^0}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx+(-1)n$\frac{1}{{x}^{n}}$,其中n∈N*,a为常数.
(Ⅰ)当n=2,且a>0时,判断函数f(x)是否存在极值,若存在,求出极值点;若不存在,说明理由;
(Ⅱ)若a=1,对任意的正整数n,当x≥1时,求证:f(x+1)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设直线系M:xcosθ+(y-1)sinθ=1(0≤θ≤2π),对于下列说法:
(1)M中所有直线均经过一个定点;
(2)存在一个圆与所有直线不相交;
(3)对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中说法正确的是(2)、(3) (填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$内一点M(l,l)的直线l交椭圆于两点,且M为线段AB的中点,则直线l的方程为3x+4y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={x|-1≤x≤5},B={x|(x-2)(3-x)≥0},在集合A中任取一个元素x,则事件“x∈A∩B”的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$也共面,则下列说法正确的是(  )
A.若$\overrightarrow{b}$与$\overrightarrow{c}$不共线,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$共面B.若$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$共面
C.当且仅当$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$共面D.若$\overrightarrow{b}$与$\overrightarrow{c}$不共线,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$不共面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x/x-1>2}与B={x/-2x+5≤0},下列关于集合A与B的关系正确的是(  )
A.B⊆AB.A⊆BC.A=BD.A?B

查看答案和解析>>

同步练习册答案