精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=alnx+(-1)n$\frac{1}{{x}^{n}}$,其中n∈N*,a为常数.
(Ⅰ)当n=2,且a>0时,判断函数f(x)是否存在极值,若存在,求出极值点;若不存在,说明理由;
(Ⅱ)若a=1,对任意的正整数n,当x≥1时,求证:f(x+1)≤x.

分析 (Ⅰ)令n=2,求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值即可;
(Ⅱ)a=1时,求出f(x)的导数,通过讨论n是奇数,偶数结合函数的单调性证明结论即可.

解答 解:(Ⅰ)由已知得函数f(x)的定义域为{x|x>0},
当n=2时,f(x)=$\frac{1}{{x}^{2}}$+alnx,所以f′(x)=$\frac{{ax}^{2}-2}{{x}^{3}}$,
当a>0时,由f′(x)=0,得x1=$\sqrt{\frac{2}{a}}$>0,x2=-$\sqrt{\frac{2}{a}}$<0,
此时f′(x)=$\frac{a(x{-x}_{1})(x{-x}_{2})}{{x}^{3}}$,
当x∈(0,x1)时,f′(x)<0,f(x)单调递减;
当x∈(x1,+∞)时,f′(x)>0,f(x)单调递增;
当a>0时,f(x)在x1=$\sqrt{\frac{2}{a}}$处取得极小值,极小值点为$\sqrt{\frac{2}{a}}$.
(Ⅱ)证:因为a=1,所以f(x)=$\frac{{(-1)}^{n}}{{x}^{n}}$+lnx,
当n为偶数时,令g(x)=x-$\frac{1}{{(x+1)}^{n}}$-ln(x+1),
则g′(x)=$\frac{x}{x+1}$+$\frac{n}{{(x+1)}^{n+1}}$,
∵x≥1,∴g′(x)>0,
所以当x∈[1,+∞)时,g(x)单调递增,g(x)的最小值为g(1).
因此:g(x)=x-$\frac{1}{{(x+1)}^{n}}$-ln(1+x)=≥g(1)=1-$\frac{1}{{(1+1)}^{n}}$-ln(1+1)≥1-$\frac{1}{{2}^{2}}$-ln2>0,
所以f(x+1)≤x成立.
当n为奇数时,
要证f(x+1)≤x,由于(-1)n$\frac{1}{{(1+x)}^{n}}$<0,所以只需证ln(x+1)≤x,令h(x)=x-ln(x+1),
则h′(x)=1-$\frac{1}{x+1}$=$\frac{x}{x+1}$>0,
当x∈[1,+∞)时,h(x)=x-ln(x+1)单调递增,又h(1)=1-ln2=ln$\frac{e}{2}$>0,
所以当x≥1时,恒有h(x)>0,命题ln(x+1)≤x成立,
综上所述,结论成立.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.F1,F2分别为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左、右焦点,A为椭圆上一点,且$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{1}}$),$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{2}}$),则|$\overrightarrow{OB}$|+|$\overrightarrow{OC}$|=(  )
A.2$\sqrt{5}$B.2C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若{$\frac{1}{{a}_{n}+1}$}为等差数列,a3=2,a7=1,则a11=(  )
A.0B.$\frac{1}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A、B、C、D在同一个球的球面上,AB=BC=$\sqrt{2}$,AC=2,若四面体ABCD中球心O恰好在侧棱DA上,DC=2$\sqrt{3}$,则这个球的表面积为(  )
A.$\frac{25π}{4}$B.C.16πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i是虚数单位,复数2+$\frac{1}{i}$的模等于$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,且(Sn-1)2=anSn(n∈N*).
(1)求S1,S2,S3的值;
(2)求出Sn及数列{an}的通项公式;
(3)设bn=(-1)n-1(n+1)2anan+1(n∈N*),求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(l,2)在直线x+y+a=0的上方的平面区域,则实数a的取值范围是a>-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程x3-3x+1=0的一个根在区间(k,k+1)(k∈N )内,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≥1}\\{3x-y≤3}\end{array}\right.$,则该约束条件所围成的平面区域的面积是2.

查看答案和解析>>

同步练习册答案