精英家教网 > 高中数学 > 题目详情
7.下面各组函数中为相等函数的是(  )
A.f(x)=$\sqrt{{{({x-1})}^2}}$,g(x)=x-1B.f(x)=$\sqrt{{x^2}-1},g(x)=\sqrt{x-1}•\sqrt{x+1}$
C.f(x)=x-1,g(x)=$\frac{1}{x-1}$D.f(x)=x0,g(x)=$\frac{1}{x^0}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断两个函数是相等的函数.

解答 解:对于A,f(x)=$\sqrt{{(x-1)}^{2}}$=|x-1|的定义域是R,g(x)=x-1的定义域是R,
对应关系不相同,所以不是相等函数;
对于B,f(x)=$\sqrt{{x}^{2}-1}$的定义域是(-∞,-1]∪[1,+∞),
g(x)=$\sqrt{x-1}$•$\sqrt{x+1}$的定义域是[1,+∞),定义域不同,所以不是相等函数;
对于C,f(x)=x-1的定义域是R,g(x)=$\frac{1}{x-1}$的定义域是(-∞,0)∪(0,+∞),
定义域不同,对应关系也不同,不是相等函数;
对于D,f(x)=x0=1的定义域是(-∞,0)∪(0,+∞),
g(x)=$\frac{1}{{x}^{0}}$=1的定义域是(-∞,0)∪(0,+∞),定义域相同,对应关系也相同,是相等函数.
故选:D.

点评 本题考查了判断两个函数是否为相等函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx,$g(x)=\frac{1}{2}ax+b$.
(1)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(2)若$φ(x)=\frac{m(x-1)}{x+1}-f(x)$在[1,+∞)上是减函数,求实数m的取值范围;
(3)证明不等式:$\frac{2n}{n+1}<$$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{ln(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,已知角A,B,C的对边分别为a,b,c,且a=5,b=6,c=7,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若{$\frac{1}{{a}_{n}+1}$}为等差数列,a3=2,a7=1,则a11=(  )
A.0B.$\frac{1}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项等比数列{an}中,a1=2,a2a6=256.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A、B、C、D在同一个球的球面上,AB=BC=$\sqrt{2}$,AC=2,若四面体ABCD中球心O恰好在侧棱DA上,DC=2$\sqrt{3}$,则这个球的表面积为(  )
A.$\frac{25π}{4}$B.C.16πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i是虚数单位,复数2+$\frac{1}{i}$的模等于$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(l,2)在直线x+y+a=0的上方的平面区域,则实数a的取值范围是a>-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于函数y=${x^{-\frac{1}{3}}}$叙述正确的是(  )
A.在(-∞,+∞)上单调递减B.在(-∞,0),(0,+∞)上单调递减
C.在(-∞,0),(0,+∞)上单调递增D.在(-∞,0)∪(0,+∞)上单调递减

查看答案和解析>>

同步练习册答案