精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)证线面平行则需在面内找一线与之平行即可平面内,过点于点,连结,在中,作于点,连结并延长交于点,则为所求作直线.(2)根据图形分别以的方向为轴, 轴, 轴的正方向,然后写出的坐标,求出面得法向量m,根据即可求得结果.

试题解析:

(1)如图,在平面内,过点于点,连结,在中,作于点,连结并延长交于点,则为所求作直线.

(2)连结,∵,∴为正三角形.

的中点,∴

又∵侧面侧面,且面

平面,∴平面

在平面内过点于点

分别以的方向为轴, 轴, 轴的正方向,建立如图所示的空间直角坐标系,则 .

的中点,∴点的坐标为

.

,∴,∴

设平面的法向量为

,得,所以平面的一个法向量为.

设直线与平面所成角为

即直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数 的定义域为R,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组 ,…, 后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:

(1)补全频率分布直方图;

(2)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);

(3)用分层抽样的方法在分数段为的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年新高一学生入学后,为了了解新生学业水平,某区对新生进行了素质测查,随机抽取了50名学生的数学成绩(均低于100分),其相关数据统计如下:

分数段

频数

选择题24分

5

2

10

4

15

12

10

6

5

4

5

5

(1)若全区高一新生有5000人,试估计成绩不低于60的人数;

(2)根据表格数据试估计全区新生数学的平均成绩(同一分数段的数据取该区间的中点值作为代表,如区间的中点值为75);

(3)从成绩在中抽取选择题得分不低于24分的3名学生进行具体分析,求至少有2学生成绩在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面 侧面1

(Ⅰ)求证:

(Ⅱ)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1)且与x轴有唯一的交点(﹣1,0). (Ⅰ)求f(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,设函数F(x)=f(x)﹣mx,若F(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;
(Ⅲ)设函数g(x)=f(x)﹣kx,x∈[﹣2,2],记此函数的最小值为h(k),求h(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为为参数,).

(Ⅰ)当时,若曲线上存在两点关于点成中心对称,求直线的参数方程;

(Ⅱ)在以原点为极点,轴正半轴为极轴的极坐标系中,极坐标方程为的直线与曲线相交于两点,若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;
(2)求AB边上的中线长的取值范围.

查看答案和解析>>

同步练习册答案