精英家教网 > 高中数学 > 题目详情
3.关于x的不等式1og${\;}_{\frac{1}{2}}$(x2-8)>1og${\;}_{\frac{1}{2}}$2x的解集为($2\sqrt{2},4$).

分析 由对数函数的单调性化对数不等式为一元二次不等式组求解.

解答 解:由1og${\;}_{\frac{1}{2}}$(x2-8)>1og${\;}_{\frac{1}{2}}$2x,得$\left\{\begin{array}{l}{{x}^{2}-8>0}\\{2x>{x}^{2}-8}\end{array}\right.$,解得$2\sqrt{2}<x<4$.
∴不等式1og${\;}_{\frac{1}{2}}$(x2-8)>1og${\;}_{\frac{1}{2}}$2x的解集为($2\sqrt{2},4$).
故答案为:($2\sqrt{2},4$).

点评 本题考查对数不等式的解法,考查对数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数f(x)=|sinx|(x≥0)的图象与过原点的直线恰有三个交点,设三个交点中横坐标的最大值为θ,则$\frac{{(1+{θ^2})sin2θ}}{θ}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{lnx}{x+a}$(a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)试比较20162017与20172016的大小,并说明理由;
(Ⅱ)若函数g(x)=f(x)-k有两个不同的零点x1,x2,证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正三棱柱ABC-A1B1C1所有棱长均为2,D、E分别是BC、BB1中点.
(1)证明:C1E⊥面ADC1
(2)求二面角A1-C1D-A的余弦值;
(3)若线段AA1上存在一点P,满足直线CE和直线C1P异面直线成角的余弦值是$\frac{\sqrt{2}}{5}$,求A1P长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a与b均为正数.且$\frac{3}{x+2}$+$\frac{3}{y+2}$=1,则x+2y的最小值为3+6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x6=a0+a1(2x-1)+a2(2x-1)2+…+a6(2x-1)6,则a2=$\frac{15}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a-b|的最小值是1,则f($\frac{1}{6}$)=(  )
A.2B.-2C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;    
(2)求|$\overrightarrow{a}$+2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知$B=\frac{π}{4}$,cosA-cos2A=0.
(1)求角C;
(2)若b2+c2=a-bc+2,求S△ABC

查看答案和解析>>

同步练习册答案