精英家教网 > 高中数学 > 题目详情
7.在△ABC中,A=2B.
(Ⅰ)求证:a=2bcosB;
(Ⅱ)若b=2,c=4,求B的值.

分析 (Ⅰ)由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得$\frac{a}{sinA}=\frac{a}{sin2B}$,即可证明:a=2bcosB;
(Ⅱ)若b=2,c=4,利用余弦定理,即可求B的值.

解答 (Ⅰ)证明:因为A=2B,
所以由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得$\frac{a}{sinA}=\frac{a}{sin2B}$,
得$\frac{a}{2sinBcosB}=\frac{b}{sinB}$,所以a=2bcosB.
(Ⅱ)解:由余弦定理,a2=b2+c2-2bccosA,
因为b=2,c=4,A=2B,
所以16cos2B=4+16-16cos2B,
所以${cos^2}B=\frac{3}{4}$,
因为A+B=2B+B<π,所以$B<\frac{π}{3}$,
所以$cosB=\frac{{\sqrt{3}}}{2}$,所以$B=\frac{π}{6}$.

点评 本题考查正弦定理、余弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若圆柱的侧面展开图是边长为4cm的正方形,则圆柱的体积为5.1cm3(结果精确到0.1cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设n∈N*,则$\sqrt{\underbrace{11…1}_{2n个}-\underbrace{22…2}_{n个}}$=(  )
A.$\underbrace{33…3}_{n个}$B.$\underbrace{33…3}_{2n-1个}$C.$\underbrace{33…3}_{{2^n}-1个}$D.$\underbrace{33…3}_{2n个}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于(  )
A.{x|2<x<3}B.{x|x>1}C.{x|1<x<2}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若抛物线y2=2px的准线经过双曲线${x^2}-\frac{y^2}{3}=1$的左焦点,则实数p=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(-1,1),$\overrightarrow{c}$=(2,3),若$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{c}$共线,则实数λ=(  )
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2cos2x-2sin(x+$\frac{3}{2}$π)cos(x-$\frac{π}{3}$)-$\frac{3}{2}$.
(1)求函数f(x)的单调递减区间;
(2)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度,再向上平移$\frac{\sqrt{3}}{2}$个单位长度,得到函数g(x)的图象,求当x∈[0,$\frac{π}{2}$]时,函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex-ax(a为常数)且f'(0)=-1,
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数y=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$的图象,可将函数y=sin2x的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

同步练习册答案