精英家教网 > 高中数学 > 题目详情
1.把函数f(x)=x2cosx在(0,+∞)内的全部极值点按从小到大的顺序排列为x1,x2,…,xn,…,则对任意正整数n必有(  )
A.-$\frac{π}{2}$<xn+1-xn<0B.1<xn+1-xn<$\frac{π}{2}$C.$\frac{π}{2}$<xn+1-xn<πD.π<xn+1-xn<$\frac{3π}{2}$

分析 求函数f(x)的导数,令导数等于0,求方程的根,判断方程的根都是函数f(x)的极值点,确定出方程根的取值范围;然后利用不等式的性质及两角差的正切公式求出xn+1-xn的范围.

解答 解:f′(x)=2xcosx-x2sinx,
由f′(x)=0,x∈(0,+∞)得:
x=$\frac{2}{tanx}$,x∈(0,+∞)
设x0是方程x=$\frac{2}{tanx}$的任意正实数根,即${x}_{0}=\frac{2}{ta{nx}_{0}}$,
则存在非负整数k,使x0∈(kπ,kπ$+\frac{π}{2}$).
当x∈(kπ,x0)时,f′(x)>0,当x∈(kπ,x0)时,f′(x)>0,$当x∈({x}_{0},kπ+\frac{π}{2})时,f′(x)<0$,
所以满足方程x=$\frac{2}{tanx}$的正根都是函数f(x)在(0,+∞)内的极值点.
∴(k-1)π$<{x}_{n}<(k-1)π+\frac{π}{2}$,kπ$<{x}_{n+1}<kπ+\frac{π}{2}$,k∈N.
∴$\frac{π}{2}<$xn+1-xn$<\frac{3π}{2}$.
又∵xn+1-xn=$\frac{2}{tan{x}_{n+1}}-\frac{2}{tan{x}_{n}}$=$\frac{2(tan{x}_{n}-tan{x}_{n+1})}{tan{x}_{n+1}tan{x}_{n}}$=$\frac{2tan({x}_{n}-{x}_{n+1})(1+tan{x}_{n}tan{x}_{n+1})}{tan{x}_{n}tan{x}_{n+1}}$>0
由于$\frac{(1+tan{x}_{n}tan{x}_{n+1})}{tan{x}_{n}tan{x}_{n+1}}>0$,所以tan(xn-xn+1)>0,
∴xn+1-xn<π.
综上:$\frac{π}{2}<{x}_{n+1}-{x}_{n}<π$.
故选C.

点评 本题考查了函数的极值、三角方程及不等式的性质,综合性较强,解答本题的关键是确定每一个极值点的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设不等式组$\left\{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域为M,在圆x2+y2=4内随机取一点P,则点P落在M内的概率为(  )
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与直线l:4x-5y+40=0,求两曲线交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知射线l1:x-y=0(x>0),l2:x+y=0(x<0),直线l过点P(m,2)(-2<m<2)交l1于点A,交l2于点B.
(1)当m=0时,求AB中点M的轨迹Γ的方程;
(2)当m=1且△AOB(O是坐标原点)面积最小时,求直线l的方程;
(3)设|$\overrightarrow{OA}$|+|$\overrightarrow{OB}$|的最小值为f(m),求f(m)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.观察(1)sin50°=$\frac{2tan25°}{1+ta{n}^{2}25°}$;(2)sin80°=$\frac{2tan40°}{1+ta{n}^{2}40°}$.
由上面两题的结构规律,你能提出一个猜想吗?并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在锐角△ABC中,三个内角A、B、C所对的边分别为a、b、c,已知acsinC=(a2+c2-b2)sinB.
(1)若∠C=$\frac{π}{6}$,求∠A的大小;
(2)若a≠b,求cosB+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为(  )
A.$\frac{1}{17}$B.$\frac{2}{17}$C.$\frac{3}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.50张彩票中只有2张中奖票,今从中任取n张,为了使这n张彩票里至少有一张中奖的概率大于0.5,n至少为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)为奇函数,且当x<0时,f(x)=2x2-1,则f(1)的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

同步练习册答案