精英家教网 > 高中数学 > 题目详情
12.(1+2x)7的展开式的第5项的系数560.

分析 (1+2x)7的展开式的第5项=${∁}_{7}^{4}$(2x)4,化简即可得出.

解答 解:(1+2x)7的展开式的第5项=${∁}_{7}^{4}$(2x)4=24${∁}_{7}^{4}$x4
其系数为:$16×\frac{7×6×5}{3×2×1}$=560.
故答案为:560.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知x>0,y>0,且$\frac{1}{x}$+$\frac{1}{y}$=1,若x+y>m恒成立,则实数m的取值范围是(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正实数a,b满足2a+b+4=4ab.若(2a+b)x2+abx-6≥0总成立,则正实数x的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知不等式x2-2ax+2>0对x∈[-1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=2cos(x-$\frac{π}{4}$),求:
(1)求此函数的最大值是多少?
(2)此函数图象的对称中心及对称轴;
(3)当x∈[$\frac{π}{12}$,$\frac{11π}{12}$]时,求函数的值域;
(4)当y≤$\sqrt{2}$时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知关于x的不等式ax+3<0的解集是(3,+∞),则关于x的不等式$\frac{ax-3}{x-2}$>0的解集是(-3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\frac{sin(2α-\frac{π}{3})+cos(2α-\frac{π}{6})}{sin2α+co{s}^{2}α}$=$\frac{2}{5}$,则tan($\frac{π}{4}$+α)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题:
①直线的倾斜角为α,则此直线的斜率为tanα;
②直线的斜率为tanα,则此直线的倾斜角为α;
③直线的倾斜角为α,则sinα>0.
其中正确的命题个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a=(1,x),\overrightarrow b=(-1,x)$,若$(2\overrightarrow a-\overrightarrow b)⊥\overrightarrow b$.则$|{\overrightarrow a}|$=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

同步练习册答案