分析 先根据两角和差的正弦、余弦公式,以及同角的三角函数的关系和二倍角公式求出tanα=$\frac{1}{3}$,再根据两角和的正切公式即可求出.
解答 解:∵sin(2α-$\frac{π}{3}$)+cos(2α-$\frac{π}{6}$)=$\frac{1}{2}$sin2α-$\frac{\sqrt{3}}{2}$cos2α+$\frac{\sqrt{3}}{2}$cos2α+$\frac{1}{2}$sin2α=sin2α
∴$\frac{sin(2α-\frac{π}{3})+cos(2α-\frac{π}{6})}{sin2α+co{s}^{2}α}$=$\frac{sin2α}{sin2α+co{s}^{2}α}$=$\frac{2sinαcosα}{2sinαcosα+co{s}^{2}α}$=$\frac{2}{2+\frac{1}{tanα}}$=$\frac{2}{5}$,
∴tanα=$\frac{1}{3}$,
∴tan($\frac{π}{4}$+α)=$\frac{1+tanα}{1-tanα}$=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2,
故答案为:2.
点评 本题考查了两角和差的正弦、余弦、正切公式,以及同角的三角函数的关系和二倍角公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x=$\frac{π}{3}$+2kπ,k∈Z} | B. | {x|x=$\frac{π}{3}$+kπ,k∈Z} | C. | {x|x=-$\frac{π}{3}$+2kπ,k∈Z} | D. | {x|x=-$\frac{π}{3}$+kπ,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$,1 | B. | $\sqrt{3}$,-1 | C. | -$\sqrt{3}$,1 | D. | -$\sqrt{3}$,-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com