| A. | [$\frac{5}{3}$,$\frac{8}{3}$] | B. | [2,$\frac{8}{3}$) | C. | [$\frac{5}{3}$,2] | D. | [$\frac{5}{3}$,2) |
分析 令f(x)=2sin(ωx+$\frac{π}{6}$)-1=0可解得ωx=2kπ或ωx=2kπ+$\frac{2π}{3}$,从而写出非负根中较小的有0,$\frac{2π}{3ω}$,$\frac{2π}{ω}$,$\frac{2π}{3ω}$+$\frac{2π}{ω}$;从而可得$\frac{2π}{ω}$≤π且$\frac{2π}{3ω}$+$\frac{2π}{ω}$>π;从而解得.
解答 解:令f(x)=2sin(ωx+$\frac{π}{6}$)-1=0得,
sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,
则ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+π-$\frac{π}{6}$,k∈Z;
则ωx=2kπ或ωx=2kπ+$\frac{2π}{3}$,
则x=$\frac{2kπ}{ω}$或x=$\frac{2kπ}{ω}$+$\frac{2π}{3ω}$;
则非负根中较小的有:
0,$\frac{2π}{3ω}$,$\frac{2π}{ω}$,$\frac{2π}{3ω}$+$\frac{2π}{ω}$;
则$\frac{2π}{ω}$≤π且$\frac{2π}{3ω}$+$\frac{2π}{ω}$>π;
故2≤ω<$\frac{8}{3}$,
故选:B.
点评 本题考查了函数的零点与方程的根的关系应用,同时考查了三角函数的求值应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | P=Q | B. | P⊆Q | C. | Q⊆P | D. | P∩Q=∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com