精英家教网 > 高中数学 > 题目详情
3.在几何体EFABCD中,矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE的值为(  )
A.2:1B.3:1C.4:1D.5:1

分析 推导出VF-ABCD=2VF-ACD=2VD-AFB,S△AFB=2S△EFB,从而VD-AFB=2VC-EFB,由此能求出VF-ABCD:VF-CBE的值.

解答 解:∵矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,
∴BC⊥平面ABEF,AF?平面ABEF,∴BC⊥AF,
又AF⊥BF,∴AF⊥平面BFC,
∴VF-ABCD=2VF-ACD=2VD-AFB
VF-CBE=VC-EFB
∵AB=2EF,∴S△AFB=2S△EFB,∴VD-AFB=2VC-EFB
∴VF-ABCD:VF-CBE=4:1.
故选:C.

点评 本题考查两个几何体的体积的比值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数$y=x+\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{-{x}^{2}+4x}$的值域是(  )
A.(-∞,4]B.(-∞,2]C.[0,2]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P是椭圆16x2+25y2=1600上一点,且在x轴上方,F1,F2是椭圆的左,右焦点,直线PF2的斜率为$-4\sqrt{3}$.
(1)求P点的坐标;
(2)求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在条件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,下,目标函数z=ax+by(a>0,b>0)的最大值为40,则$\frac{5}{a}+\frac{1}{b}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z1,z2满足|z1|=|z2|=1,|z1+z2|=$\sqrt{2}$,则|z1-z2|=(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上一点(不包括棱的端点),若满足|PA|+|PC1|=m的点P的个数为6,则m的取值范围是$(\sqrt{3},\sqrt{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-$\sqrt{3}$,0),右顶点为D(2,0),设点A(1,0.5).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=ax3-x2+4x+3恰有三个零点,则实数a的取值范围是(-2,0)∪(0,$\frac{14}{243}$).

查看答案和解析>>

同步练习册答案