17£®ÒÑÖªº¯Êý$y=x+\frac{t}{x}$ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýt£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ$£¨0£¬\sqrt{t}]$ÉÏÊǼõº¯Êý£¬ÔÚ$[\sqrt{t}£¬+¡Þ£©$ÉÏÊÇÔöº¯Êý£®
£¨1£©ÒÑÖªf£¨x£©=$\frac{4{x}^{2}+4x+5}{2x+1}$-8£¬x¡Ê[0£¬1]£¬ÀûÓÃÉÏÊöÐÔÖÊ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍÖµÓò£»
£¨2£©¶ÔÓÚ£¨1£©Öеĺ¯Êýf£¨x£©ºÍº¯Êýg£¨x£©=-x-2a£¬Èô¶ÔÈÎÒâx1¡Ê[0£¬1]£¬×Ü´æÔÚx2¡Ê[0£¬1]£¬Ê¹µÃg£¨x2£©=f£¨x1£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©»¯¼òf£¨x£©£¬Éèu=2x+1£¬x¡Ê[0£¬1]£¬1¡Üu¡Ü3£¬Ôò$y=u+\frac{4}{u}-8$£¬u¡Ê[1£¬3]£®ÔËÓÃÐÔÖÊ£¬¼´¿ÉµÃµ½µ¥µ÷Çø¼äºÍÖµÓò£»
£¨2£©ÇóµÃg£¨x£© µÄÖµÓò£¬ÓÉÌâÒâf£¨x£©µÄÖµÓòÊÇg£¨x£©ÖµÓòµÄ×Ó¼¯£¬µÃµ½²»µÈʽ×飬¼´¿ÉµÃµ½aµÄ·¶Î§£®

½â´ð ½â£º£¨1£©$y=f£¨x£©=\frac{{4{x^2}-12x-3}}{2x+1}=2x+1+\frac{4}{2x+1}-8$£¬
Éèu=2x+1£¬x¡Ê[0£¬1]£¬1¡Üu¡Ü3£¬
Ôò$y=u+\frac{4}{u}-8$£¬u¡Ê[1£¬3]£®
ÓÉÒÑÖªÐÔÖʵ㬵±1¡Üu¡Ü2£¬¼´$0¡Üx¡Ü\frac{1}{2}$ʱ£¬f£¨x£©µ¥µ÷µÝ¼õ£¬
ËùÒÔ¼õÇø¼äΪ$[0£¬\frac{1}{2}]$£»µ±2¡Üu¡Ü3£¬¼´$\frac{1}{2}¡Üx¡Ü1$ʱ£¬f£¨x£©µ¥µ÷µÝÔö£¬
ËùÒÔÔöÇø¼äΪ$[\frac{1}{2}£¬1]$£»ÓÉf£¨0£©=-3£¬$f£¨\frac{1}{2}£©=-4$£¬$f£¨1£©=-\frac{11}{3}$£¬
µÃf£¨x£©µÄÖµÓòΪ[-4£¬-3]£®
£¨2£©g£¨x£©=-x-2aΪ[0£¬1]Éϵļõº¯Êý£¬
¹Êg£¨x£©¡Ê[-1-2a£¬-2a]£¬x¡Ê[0£¬1]£¬
ÓÉÌâÒâf£¨x£©µÄÖµÓòÊÇg£¨x£©ÖµÓòµÄ×Ó¼¯£¬
¡à$\left\{\begin{array}{l}-1-2a¡Ü-4\\-2a¡Ý-3\end{array}\right.$£¬¡à$a=\frac{3}{2}$£®
¼´aµÄȡֵ·¶Î§ÊÇ{$\frac{3}{2}$}£®

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄµ¥µ÷Çø¼äºÍÖµÓòµÄÇ󷨣¬º¯ÊýµÄÈÎÒâºÍ´æÔÚÎÊÌâµÄ½â·¨£¬¿¼²é»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2k-3£¬-6£©£¬$\overrightarrow{b}$=£¨2£¬1£©£¬ÇÒ$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÔòʵÊýkµÄֵΪ£¨¡¡¡¡£©
A£®2B£®-2C£®-3D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=ax2+bx£¨a¡Ù0£©µÄµ¼º¯Êýf¡ä£¨x£©=-2x+7£¬ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µãPn£¨n£¬Sn£©£¨n¡ÊN*£©¾ùÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ¼°SnµÄ×î´óÖµ£»
£¨2£©Áîbn=$\sqrt{2^{_{a_n}}}$£¬ÆäÖÐn¡ÊN*£¬Çó{nbn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèA={x|xÊÇСÓÚ9µÄÕýÕûÊý}£¬B={3£¬4£¬5£¬6}£¬Ôò∁ABµÈÓÚ£¨¡¡¡¡£©
A£®{1£¬2£¬3£¬4£¬5£¬6}B£®{7£¬8}C£®{4£¬5£¬6£¬7£¬8}D£®{1£¬2£¬7£¬8}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Óëy=xΪͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=£¨$\sqrt{x}$£©2B£®y=$\frac{{x}^{2}}{x}$C£®y=$\left\{\begin{array}{l}{x£¬£¨x£¾0£©}\\{-x£¬£¨x£¼0£©}\end{array}\right.$D£®y=$\root{3}{{x}^{3}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ëæ»úÖÀÁ½Ã¶ÖʵؾùÔȵÄ÷»×Ó£¬ËüÃÇÏòÉϵĵãÊýÖ®ºÍ²»³¬¹ý5µÄ¸ÅÂÊΪ$\frac{5}{18}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªa1=1£¬${a_n}=n£¨{a_{n+1}}-{a_n}£©£¨n¡Ê{N^*}£©$£¬ÔòÊýÁÐ{an}µÄͨÏʽÊÇ£¨¡¡¡¡£©
A£®nB£®${£¨\frac{n+1}{n}£©^{n-1}}$C£®n2D£®2n-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªµÈ²îÊýÁÐ{an}£¬an¡ÊN*£¬Sn=$\frac{1}{8}$£¨an+2£©2£®Èôbn=$\frac{1}{2}$an-30£¬ÇóÊýÁР{bn}µÄǰ15ÏîºÍµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚ¼¸ºÎÌåEFABCDÖУ¬¾ØÐÎABCDËùÔ򵀮½ÃæºÍÌÝÐÎABEFËùÔ򵀮½Ã滥Ïà´¹Ö±£¬ÇÒAB¡ÎEF£¬AB=2EF£¬ÉèÆ½ÃæCBF½«¼¸ºÎÌåEFABCD·Ö³ÉµÄÁ½¸ö×¶ÌåµÄÌå»ý·Ö±ðΪVF-ABCD£¬VF-CBE£¬ÇóVF-ABCD£ºVF-CBEµÄֵΪ£¨¡¡¡¡£©
A£®2£º1B£®3£º1C£®4£º1D£®5£º1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸