精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$=(2k-3,-6),$\overrightarrow{b}$=(2,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为(  )
A.2B.-2C.-3D.3

分析 利用向量垂直的性质直接求解.

解答 解:∵向量$\overrightarrow{a}$=(2k-3,-6),$\overrightarrow{b}$=(2,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=2(2k-3)-6=0,
解得实数k=3.
故选:D.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2$\sqrt{x}$+$\sqrt{5-x}$.
(1)求函数f(x)最大值,并求出相应的x的值;
(2)若关于x的不等式.f(x)≤|m-2|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U={x|x≥-3},集合A={x|-3<x≤4},则∁UA={x|x=-3或x>4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{alnx}{x}$的图象在点(e2,f(e2))处的切线与直线y=-$\frac{1}{{e}^{4}}$x平行,则f(x)的极值点是x=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的定义域:
(1)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+$\sqrt{3x+1}$;            
(2)g(x)=$\frac{{\sqrt{2x-1}}}{x-1}$+(5x-4)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设集合A={x|-1≤x+1≤6},B={x|m-1≤x<2m+1}.
(1)当x∈Z,求A的真子集的个数?
(2)若B⊆A,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,D是BC中点,E是AD中点,CE的延长线交AB于点F,若$\overrightarrow{DF}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=(  )
A.$-\frac{2}{3}$B.$-\frac{3}{4}$C.$\frac{6}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$y=x+\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案