分析 求出函数的导数,根据f′(e2)=-$\frac{a}{{e}^{4}}$=-$\frac{1}{{e}^{4}}$,求出a的值,从而求出f(x)的解析式,求出函数的导数,解关于导函数的方程,求出函数的极值点即可.
解答 解:f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$,
故f′(e2)=-$\frac{a}{{e}^{4}}$=-$\frac{1}{{e}^{4}}$,解得:a=1,
故f(x)=$\frac{lnx}{x}$,f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)=0,解得:x=e,
经检验x=e是函数的极值点,
故答案为:x=e.
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (0,1) | C. | (0,$\frac{1}{2}$) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5,1 | B. | $2\sqrt{6}$,1 | C. | $2\sqrt{6}$,±1 | D. | 5,±1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4,5,6} | B. | {7,8} | C. | {4,5,6,7,8} | D. | {1,2,7,8} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com