精英家教网 > 高中数学 > 题目详情
5.设A={x|x是小于9的正整数},B={3,4,5,6},则∁AB等于(  )
A.{1,2,3,4,5,6}B.{7,8}C.{4,5,6,7,8}D.{1,2,7,8}

分析 先化简A,再进行计算.

解答 解:A={x|x是小于9的正整数}={1,2,3,4,5,6,7,8,9},
∵B={3,4,5,6},
则∁AB={1,2,7,8}
故选D

点评 本题考查集合的描述法表示,集合的基本运算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{alnx}{x}$的图象在点(e2,f(e2))处的切线与直线y=-$\frac{1}{{e}^{4}}$x平行,则f(x)的极值点是x=e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,D是BC中点,E是AD中点,CE的延长线交AB于点F,若$\overrightarrow{DF}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=(  )
A.$-\frac{2}{3}$B.$-\frac{3}{4}$C.$\frac{6}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设等差数列{an}的前n项和为Sn,且满足S17>0,S18<0,则Sn取最大值时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在下列区间中,函数f(x)=lnx+x-3的零点所在的区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C的方程:x2+y2-2x-4y+m=0
(1)求m的取值范围;
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{{4\sqrt{5}}}{5}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$y=x+\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为$\frac{1}{2}R$,AB=AC=BC=3,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P是椭圆16x2+25y2=1600上一点,且在x轴上方,F1,F2是椭圆的左,右焦点,直线PF2的斜率为$-4\sqrt{3}$.
(1)求P点的坐标;
(2)求△PF1F2的面积.

查看答案和解析>>

同步练习册答案