精英家教网 > 高中数学 > 题目详情
9.已知a1=1,${a_n}=n({a_{n+1}}-{a_n})(n∈{N^*})$,则数列{an}的通项公式是(  )
A.nB.${(\frac{n+1}{n})^{n-1}}$C.n2D.2n-1

分析 ${a_n}=n({a_{n+1}}-{a_n})(n∈{N^*})$,可得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,a2=2.利用累乘即可得出.

解答 解:∵${a_n}=n({a_{n+1}}-{a_n})(n∈{N^*})$,则$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,a2=2.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•…$\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n}{n-1}•\frac{n-1}{n-2}$•…×$\frac{2}{1}×1$=n,
故选:A.

点评 本题考查了数列递推关系、通项公式、累乘法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设集合A={x|-1≤x+1≤6},B={x|m-1≤x<2m+1}.
(1)当x∈Z,求A的真子集的个数?
(2)若B⊆A,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在下列区间中,函数f(x)=lnx+x-3的零点所在的区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$y=x+\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知全集U=R,A={x|x2<16},B={x|y=log3(x-4)},则下列关系正确的是(  )
A.A∪B=RB.A∪(∁RB)=RC.A∩(∁RB)=RD.(∁RA)∪B=R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为$\frac{1}{2}R$,AB=AC=BC=3,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=-|x|,g(x)=lg(ax2-4x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{-{x}^{2}+4x}$的值域是(  )
A.(-∞,4]B.(-∞,2]C.[0,2]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上一点(不包括棱的端点),若满足|PA|+|PC1|=m的点P的个数为6,则m的取值范围是$(\sqrt{3},\sqrt{5})$.

查看答案和解析>>

同步练习册答案