精英家教网 > 高中数学 > 题目详情

已知函数f(x)的图象经过点(0,1),则函数f-1(x)的图象一定经过点________;函数f(x+4)的反函数的图象一定经过点________.

(1,0)    (1,-4)
分析:根据原函数与反函数图象之间的关系可得结论,对于原函数与复合函数的所过定点问题,本题可利用在函数值1保持不变的情况下,求出与原函数自变量x=0与之对应的复合函数的自变量x=-4,由函数与反函数定义域和值域的关系得出反函数图象经过点(1,-4).
解答:由函数y=f(x)的图象经过点(0,1),得f(0)=1,则f-1(1)=0
∴函数f-1(x)的图象一定经过点(1,0)
所以当x=-4时有f(4+x)=f(0)=1,
从而函数y=f(4+x)过点(-4,1),则函数y=f(4+x)的反函数并经过点(1,-4),
故答案为:(1,0),(1,-4).
点评:本题主要考查复合函数与原函数关系,以及函数与反函数关系,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象有且仅有由五个点构成,它们分别为(1,2),(2,3),(3,3),(4,2),(5,2),则f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,2an+1=
2n,n为奇数
f(an),n为偶数

(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于原点对称,且当x<0时,f(x)=2x-4,那么当x>0时,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知函数f(x)的图象过点(
π
4
,-
1
2
),它的导函数f′(x)=Acos(ωx+φ)(x∈R)的图象的一部分如图所示,其中A>0,ω>0,|φ|<
π
2
,为了得到函
数f(x)的图象,只要将函数y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步练习册答案