精英家教网 > 高中数学 > 题目详情
7.已知双曲线kx2-2ky2=4的一条准线是y=1,则实数k的值是(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.1D.-1

分析 由题意,双曲线kx2-2ky2=4可化为$\frac{{y}^{2}}{-\frac{2}{k}}-\frac{{x}^{2}}{-\frac{4}{k}}$=1,可得a2=-$\frac{2}{k}$,b2=-$\frac{4}{k}$,c2=-$\frac{6}{k}$,利用双曲线kx2-2ky2=4的一条准线是y=1,建立方程,即可得出结论.

解答 解:由题意,双曲线kx2-2ky2=4可化为$\frac{{y}^{2}}{-\frac{2}{k}}-\frac{{x}^{2}}{-\frac{4}{k}}$=1,
∴a2=-$\frac{2}{k}$,b2=-$\frac{4}{k}$,c2=-$\frac{6}{k}$,
∵双曲线kx2-2ky2=4的一条准线是y=1,
∴$\frac{-\frac{2}{k}}{\sqrt{-\frac{6}{k}}}$=1,
∴k=-$\frac{2}{3}$,
故选:B.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=-x2+2x.设f(x)在[2n-2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn,则Sn的取值范围是(  )
A.[1,$\frac{3}{2}$)B.[1,$\frac{3}{2}$]C.[$\frac{3}{2}$,2)D.[$\frac{3}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=cos2x-2sinxcosx-sin2x.
(1)求f(x)的最小正周期;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的最小值及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设抛物线C1:y2=2px(p>0)的焦点F是双曲线C2:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)右焦点.若曲线C1与C2的公共弦AB恰好过F,则双曲线C1的离心率e的值为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设等比数列{an}的前n项和Sn,已知a1=2,a2=4,那么S10等于(  )
A.210+2B.29-2C.210-2D.211-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\frac{1-tanα}{2+tanα}$=1,求证:cosα-sinα=3(cosα+sinα).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若存在正整数m,使得f(n)=(2n-7)3n+9(n∈N*)都能被m整除,则m的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(2x-$\frac{3π}{4}$)

(1)画出函数f(x)在区间[0,π]的简图(要求列表);
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解关于x的不等式:mx2-mx<x-1(m∈R).

查看答案和解析>>

同步练习册答案